亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

函數(shù)極限的性質(zhì)證明

時(shí)間:2023-04-29 19:08:38 證明范文 我要投稿
  • 相關(guān)推薦

函數(shù)極限的性質(zhì)證明

函數(shù)極限的性質(zhì)證明

X1=2,Xn+1=2+1/Xn,證明Xn的極限存在,并求該極限

函數(shù)極限的性質(zhì)證明

求極限我會(huì)

|Xn+1-A|<|Xn-A|/A

以此類推,改變數(shù)列下標(biāo)可得 |Xn-A|<|Xn-1-A|/A ;

|Xn-1-A|<|Xn-2-A|/A;

……

|X2-A|<|X1-A|/A;

向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)

2

只要證明{x(n)}單調(diào)增加有上界就可以了。

用數(shù)學(xué)歸納法:

①證明{x(n)}單調(diào)增加。

x(2)=√[2+3x(1)]=√5>x(1);

設(shè)x(k+1)>x(k),則

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)

=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。

②證明{x(n)}有上界。

x(1)=1<4,

設(shè)x(k)<4,則

x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

3

當(dāng)0

當(dāng)0

構(gòu)造函數(shù)f(x)=x*a^x(0

令t=1/a,則:t>1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

則:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)[x'/(t^x)'](分子分母分別求導(dǎo))

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,對(duì)于數(shù)列n*a^n,其極限為0

4

用數(shù)列極限的定義證明

3.根據(jù)數(shù)列極限的定義證明:

(1)lim[1/(n的平方)]=0

n→∞

(2)lim[(3n+1)/(2n+1)]=3/2

n→∞

(3)lim[根號(hào)(n+1)-根號(hào)(n)]=0

n→∞

(4)lim0.999…9=1

n→∞ n個(gè)9

5幾道數(shù)列極限的證明題,幫個(gè)忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

實(shí)質(zhì)就是計(jì)算題,只不過(guò)題目把答案告訴你了,你把過(guò)程寫出來(lái)就好了

第一題,分子分母都除以n,把n等于無(wú)窮帶進(jìn)去就行

第二題,利用海涅定理,把n換成x,原題由數(shù)列極限變成函數(shù)極限,用羅比達(dá)法則(不知樓主學(xué)了沒(méi),沒(méi)學(xué)的話以后會(huì)學(xué)的)

第三題,n趨于無(wú)窮時(shí)1/n=0,sin(1/n)=0

不知樓主覺(jué)得我的解法對(duì)不對(duì)呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim[(1/n)*sin(1/n)/(1/n)]=lim(1/n)*lim[sin(1/n)]/(1/n)=0*1=0

【函數(shù)極限的性質(zhì)證明】相關(guān)文章:

常用函數(shù)極限的求法04-29

可積函數(shù)的逼近性質(zhì)的證明及其應(yīng)用04-28

極限 定義證明11-20

部分子關(guān)聯(lián)函數(shù)的性質(zhì)04-28

積分上限函數(shù)的性質(zhì)研究04-28

關(guān)于凸函數(shù)的定義和性質(zhì)05-02

2015年考研數(shù)學(xué)重要考點(diǎn) 極限的性質(zhì)04-29

Gamma函數(shù)和Psi函數(shù)的單調(diào)性質(zhì)與不等式04-29

二元函數(shù)極限計(jì)算方法研究04-30

2012考研數(shù)學(xué)函數(shù)極限和連續(xù)性04-28