誘導公式的本質:
所謂三角函數誘導公式,就是將角n·(π/2)±α的三角函數轉化為角α的三角函數。
常用的誘導公式:
公式一: 設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α與 -α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函數值之間的關系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
誘導公式記憶口訣:“奇變偶不變,符號看象限”。
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
符號判斷口訣:
“一全正;二正弦;三兩切;四余弦”。這十二字口訣的意思就是說: 第一象限內任何一個角的四種三角函數值都是“+”; 第二象限內只有正弦是“+”,其余全部是“-”; 第三象限內只有正切和余切是“+”,其余全部是“-”; 第四象限內只有余弦是“+”,其余全部是“-”。
“ASCT”反Z。意即為“all(全部)”、“sin”、“cos”、“tan”按照將字母Z反過來寫所占的象限對應的三角函數為正值。
[中考數學《三角函數誘導公式》復習輔導]