亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

正弦定理概念教學(xué)設(shè)計(jì)

時(shí)間:2024-06-30 16:10:05 學(xué)人智庫(kù) 我要投稿
  • 相關(guān)推薦

正弦定理概念教學(xué)設(shè)計(jì)

  正弦定理是三角學(xué)中的一個(gè)基本定理,它指出“在任意一個(gè)平面三角形中,各邊和它所對(duì)角的正弦值的比相等且等于外接圓的直徑”。小編與大家分享正弦定理的教學(xué)設(shè)計(jì),歡迎參考!

正弦定理概念教學(xué)設(shè)計(jì)

  一、教學(xué)內(nèi)容分析

  本節(jié)內(nèi)容安排在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)必修5》(北師大版)第二章,正弦定理第一課時(shí),是在高一學(xué)生學(xué)習(xí)了三角等知識(shí)之后,顯然是對(duì)三角知識(shí)的應(yīng)用;同時(shí),作為三角形中的一個(gè)定理,也是對(duì)初中解直角三角形內(nèi)容的直接延伸,因而定理本身的應(yīng)用又十分廣泛。

  根據(jù)實(shí)際教學(xué)處理,正弦定理這部分內(nèi)容共分為三個(gè)層次:第一層次教師通過(guò)引導(dǎo)學(xué)生對(duì)實(shí)際問(wèn)題的探索,并大膽提出猜想;第二層次由猜想入手,帶著疑問(wèn),以及特殊三角形中邊角的關(guān)系的驗(yàn)證,通過(guò)“作高法”、“等積法”、“外接圓法”、“ 向量法”等多種方法證明正弦定理,驗(yàn)證猜想的正確性,并得到三角形面積公式;第三層次利用正弦定理解決引例,最后進(jìn)行簡(jiǎn)單的應(yīng)用。學(xué)生通過(guò)對(duì)任意三角形中正弦定理的探索、發(fā)現(xiàn)和證明,感受“觀察——實(shí)驗(yàn)——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。

  二、學(xué)情分析

  布魯納指出,學(xué)生不是被動(dòng)的、消極的知識(shí)的接受者,而是主動(dòng)的、積極的知識(shí)的探究者。教師的作用是創(chuàng)設(shè)學(xué)生能夠獨(dú)立探究的情境,引導(dǎo)學(xué)生去思考,參與知識(shí)獲得的過(guò)程。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。

  三、設(shè)計(jì)思想:

  《正弦定理》一課教學(xué)模式和策略設(shè)計(jì)就是想讓素質(zhì)教育如何落實(shí)在課堂教學(xué)的每一個(gè)環(huán)節(jié)上進(jìn)行一些探索和研究。旨在通過(guò)學(xué)生自己的思維活動(dòng)獲取數(shù)學(xué)知識(shí),提高學(xué)生基礎(chǔ)性學(xué)力(基礎(chǔ)能力),培養(yǎng)學(xué)生發(fā)展性學(xué)力(培養(yǎng)終身學(xué)習(xí)能力),誘發(fā)學(xué)生創(chuàng)造性學(xué)力(提高應(yīng)用能力),最終達(dá)到素質(zhì)教育目的。為此,我在設(shè)計(jì)這節(jié)課時(shí),采用問(wèn)題開放式課堂教學(xué)模式,以學(xué)生參與為主,教師啟發(fā)、點(diǎn)撥的課堂教學(xué)策略。通過(guò)設(shè)置開放性問(wèn)題,問(wèn)題的層次性推進(jìn)和教師啟發(fā)、點(diǎn)撥發(fā)展學(xué)生有效思維,提高數(shù)學(xué)能力,達(dá)到上述三種學(xué)力的提高、培養(yǎng)和誘發(fā)。以學(xué)生參與為主,教師啟發(fā)、點(diǎn)撥教學(xué)策略是體現(xiàn)以學(xué)生發(fā)展為本的現(xiàn)代教育觀,在開放式討論過(guò)程中,提高學(xué)生的數(shù)學(xué)基礎(chǔ)能力,發(fā)展學(xué)生的各種數(shù)學(xué)需要,使其獲得終身受用的數(shù)學(xué)基礎(chǔ)能力和創(chuàng)造才能。建構(gòu)主義強(qiáng)調(diào),學(xué)生并不是空著腦袋走進(jìn)教室的。在日常生活中,在以往的學(xué)習(xí)中,他們已經(jīng)形成了豐富的經(jīng)驗(yàn),小到身邊的衣食住行,大到宇宙、星體的運(yùn)行,從自然現(xiàn)象到社會(huì)生活,他們幾乎都有一些自己的看法。而且,有些問(wèn)題即使他們還沒有接觸過(guò),沒有現(xiàn)成的經(jīng)驗(yàn),但當(dāng)問(wèn)題一旦呈現(xiàn)在面前時(shí),他們往往也可以基于相關(guān)的經(jīng)驗(yàn),依靠他們的認(rèn)知能力,形成對(duì)問(wèn)題的某種解釋。而且,這種解釋并不都是胡亂猜測(cè),而是從他們的經(jīng)驗(yàn)背景出發(fā)而推出的合乎邏輯的假設(shè)。所以,教學(xué)不能無(wú)視學(xué)生的這些經(jīng)驗(yàn),另起爐灶,從外部裝進(jìn)新知識(shí),而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)

  的生長(zhǎng)點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長(zhǎng)”出新的知識(shí)經(jīng)驗(yàn)。

  為此我們根據(jù)“問(wèn)題教學(xué)”模式,沿著“設(shè)置情境--提出問(wèn)題--解決問(wèn)題--反思應(yīng)用”這條主線,把從情境中探索和提出數(shù)學(xué)問(wèn)題作為教學(xué)的出發(fā)點(diǎn),以“問(wèn)題”為主線組織教學(xué),形成以提出問(wèn)題與解決問(wèn)題相互引發(fā)攜手并進(jìn)的“情境--問(wèn)題”學(xué)習(xí)鏈,使學(xué)生真正成為提出問(wèn)題和解決問(wèn)題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過(guò)程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過(guò)程。

  根據(jù)上述精神,做出了如下設(shè)計(jì):

  1、創(chuàng)設(shè)一個(gè)現(xiàn)實(shí)問(wèn)題情境作為提出問(wèn)題的背景;

  2、啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實(shí)問(wèn)題,逐步將現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化、抽象成過(guò)渡性數(shù)學(xué)問(wèn)題,解決過(guò)渡性問(wèn)題時(shí)需要使用正弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進(jìn)一步探索解決問(wèn)題的動(dòng)機(jī)。然后引導(dǎo)學(xué)生抓住問(wèn)題的數(shù)學(xué)實(shí)質(zhì),將過(guò)渡性問(wèn)題引伸成一般的數(shù)學(xué)問(wèn)題:已知三角形的兩條邊和一邊的對(duì)角,求另一邊的對(duì)角及第三邊。解決這兩個(gè)問(wèn)題需要先回答目標(biāo)問(wèn)題:在三角形中,兩邊與它們的對(duì)角之間有怎樣的關(guān)系?

  3、為了解決提出的目標(biāo)問(wèn)題,引導(dǎo)學(xué)生回到他們所熟悉的直角三角形中,得出目標(biāo)問(wèn)題在直角三角形中的解,從而形成猜想,然后引導(dǎo)學(xué)生對(duì)猜想進(jìn)行驗(yàn)證。

  四、教學(xué)目標(biāo)

  1.讓學(xué)生從已有的幾何知識(shí)出發(fā), 通過(guò)對(duì)任意三角形邊角關(guān)系的探索,共同探究在任意三角形中,邊與其對(duì)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀察,實(shí)驗(yàn),猜想,驗(yàn)證,證明,由特殊到一般歸納出正弦定理,掌握正弦定理的內(nèi)容及其證明方法,理解三角形面積公式,并學(xué)會(huì)運(yùn)用正弦定理解決解斜三角形的兩類基本問(wèn)題。

  2.通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生觀察問(wèn)題、提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強(qiáng)學(xué)生的協(xié)作能力和交流能力,發(fā)展學(xué)生的創(chuàng)新意識(shí),培養(yǎng)創(chuàng)造性思維的能力。

  3.通過(guò)學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)規(guī)律的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的創(chuàng)新品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  4.培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過(guò)平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的猜想提出過(guò)程。

  六教學(xué)過(guò)程

  1、設(shè)置情境

  利用投影展示:一條河的兩岸平行,河寬d=1km,因上游突發(fā)洪水,在洪峰到來(lái)之前,急需將碼頭A處囤積的重要物資及人員用船轉(zhuǎn)運(yùn)到正對(duì)岸的碼頭B處或其下游1 km的碼頭C處。已知船在靜水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。

  2、提出問(wèn)題

  師:為了確定轉(zhuǎn)運(yùn)方案,請(qǐng)同學(xué)們?cè)O(shè)身處地地考慮一下有關(guān)的問(wèn)題,將各自的問(wèn)題經(jīng)小組(前后4人為一小組)匯總整理后交給我。

  待各小組將題紙交給老師后,老師篩選幾張有代表性的題紙通過(guò)投影向全班展示,經(jīng)大家歸納整理后得到如下的5個(gè)問(wèn)題:

  (l)船應(yīng)開往B處還是C處?

  (2)船從A開到B、C分別需要多少時(shí)間?

  (3)船從A到B、C的距離分別是多少?

  (4)船從A到B、C時(shí)的速度大小分別是多少?

  (5)船應(yīng)向什么方向開,才能保證沿直線到達(dá)B、C?

  師:大家討論一下,應(yīng)該怎樣解決上述問(wèn)題?

  大家經(jīng)過(guò)討論達(dá)成如下共識(shí):要回答問(wèn)題(l),需要解決問(wèn)題(2),要解決問(wèn)題(2),需要先解決問(wèn)題(3)和(4),問(wèn)題(3)用直角三角形知識(shí)可解,所以重點(diǎn)是解決問(wèn)題(4),問(wèn)題(4)與問(wèn)題(5)是兩個(gè)相關(guān)問(wèn)題,因此,解決上述問(wèn)題的關(guān)鍵是解決問(wèn)題(4)和(5)。

  師:請(qǐng)同學(xué)們根據(jù)平行四邊形法則,先在練習(xí)本上做出與問(wèn)題對(duì)應(yīng)的示意圖,明確已知什么,要求什么,怎樣求解。

  生:船從A開往B的情況如圖2,根據(jù)平行四邊形的性質(zhì)及解直角三角形的知識(shí),可求得船在河水中的速度大小∣v∣及vl與v2的夾角θ:

  生:船從A開往C的情況如圖3,∣AD∣=∣v1∣= 5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED =∠EAF = 450,還需求θ及v。我不知道怎樣解這兩個(gè)問(wèn)題,因?yàn)橐郧皬奈唇膺^(guò)類似的問(wèn)題。

  師:請(qǐng)大家想一下,這兩個(gè)問(wèn)題的數(shù)學(xué)實(shí)質(zhì)是什么?

  部分學(xué)生:在三角形中,已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角和第三邊。

  師:請(qǐng)大家討論一下,如何解決這兩個(gè)問(wèn)題?

  生:在已知條件下,若能知道三角形中兩條邊與其對(duì)角這4個(gè)元素之間的數(shù)量關(guān)系,則可以解決上述問(wèn)題,求出另一邊的對(duì)角。

  生:如果另一邊的對(duì)角已經(jīng)求出,那么第三個(gè)角也能夠求出。只要能知道三角形中兩條邊與其對(duì)角這4個(gè)元素的數(shù)量關(guān)系,則第三邊也可求出。

  生:在已知條件下,如果能知道三角形中三條邊和一個(gè)角這4個(gè)元素之間的數(shù)量關(guān)系,也能求出第三邊和另一邊的對(duì)角。

  師:同學(xué)們的設(shè)想很好,只要能知道三角形中兩邊與它們的對(duì)角間的數(shù)量關(guān)系,或者三條邊與一個(gè)角間的數(shù)量關(guān)系,則兩個(gè)問(wèn)題都能夠順利解決。下面我們先來(lái)解答問(wèn)題:三角形中,任意兩邊與其對(duì)角之間有怎樣的數(shù)量關(guān)系?

  3、解決問(wèn)題

  師:請(qǐng)同學(xué)們想一想,我們以前遇到這種一般問(wèn)題時(shí),是怎樣處理的?

  眾學(xué)生:先從特殊事例入手,尋求答案或發(fā)現(xiàn)解法。直角三角形是三角形的特例,可以先在直角三角形中試探一下。

  師:請(qǐng)各小組研究在Rt△ABC中,任意兩邊及其對(duì)角這4個(gè)元素間有什么關(guān)系?

  多數(shù)小組很快得出結(jié)論:a/sinA = b/sinB = c/sinC。

  師:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?

  眾學(xué)生:不一定,可以先用具體例子檢驗(yàn)。若有一個(gè)不成立,則否定結(jié)論;若都成立,則說(shuō)明這個(gè)結(jié)論很可能成立,再想辦法進(jìn)行嚴(yán)格的證明。

  師:這是個(gè)好主意。請(qǐng)每個(gè)小組任意做出一個(gè)非Rt△ABC,用量角器和刻度尺量出各邊的長(zhǎng)和各角的大小,用計(jì)算器作為計(jì)算工具,具體檢驗(yàn)一下,然后報(bào)告檢驗(yàn)結(jié)果。

  幾分鐘后,多數(shù)小組報(bào)告結(jié)論成立,只有一個(gè)小組因測(cè)量和計(jì)算誤差,得出否定的結(jié)論。教師在引導(dǎo)學(xué)生找出失誤的原因后指出:此關(guān)系式在任意△ABC中都能成立,請(qǐng)大家先考慮一下證明思路。

  生:想法將問(wèn)題轉(zhuǎn)化成直角三角形中的問(wèn)題進(jìn)行解決。

  生:因?yàn)橐C明的是一個(gè)等式,所以應(yīng)先找到一個(gè)可以作為證明基礎(chǔ)的等量關(guān)系。

  師:在三角形中有哪些可以作為證明基礎(chǔ)的等量關(guān)系呢?

  學(xué)生七嘴八舌地說(shuō)出一些等量關(guān)系,經(jīng)討論后確定如下一些與直角三角形有關(guān)的等量關(guān)系可能有利用價(jià)值:1、三角形的面積不變;2、三角形同一邊上的高不變;3、三角形外接圓直徑不變。

  師:據(jù)我所知,從AC+CB=AB出發(fā),也能證得結(jié)論,請(qǐng)大家討論一下。

  生:要想辦法將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。

  生:利用向量的數(shù)量積運(yùn)算可將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。

  生:還要想辦法將有三個(gè)項(xiàng)的關(guān)系式轉(zhuǎn)化成兩個(gè)項(xiàng)的關(guān)系式。

  生:因?yàn)閮蓚(gè)垂直向量的數(shù)量積為0,可考慮選一個(gè)與三個(gè)向量中的一個(gè)向量(如向量AC)垂直的向量與向量等式的兩邊分別作數(shù)量積。

  師:同學(xué)們通過(guò)自己的努力,發(fā)現(xiàn)并證明了正弦定理。正弦定理揭示了三角形中任意兩邊與其對(duì)角的關(guān)系,請(qǐng)大家留意身邊的事例,正弦定理能夠解決哪些問(wèn)題。

  4.運(yùn)用定理,解決例題

  師生活動(dòng):

  教師:引導(dǎo)學(xué)生從分析方程思想分析正弦定理可以解決的問(wèn)題。

  學(xué)生:討論正弦定理可以解決的問(wèn)題類型:

  ①如果已知三角形的任意兩個(gè)角與一邊,求三角形的另一角和另兩邊,如 ;

  ②如果已知三角形任意兩邊與其中一邊的對(duì)角,求另一邊與另兩角,如 。

  師生:例1的處理,先讓學(xué)生思考回答解題思路,教師板書,讓學(xué)生思考主要是突出主體,教師板書的目的是規(guī)范解題步驟。

  例1:在 中,已知 , , ,解三角形。

  分析“已知三角形中兩角及一邊,求其他元素”,第一步可由三角形內(nèi)角和為 求出第三個(gè)角∠C,再由正弦定理求其他兩邊。

  例2:在 中,已知 , , ,解三角形。

  例2的處理,目的是讓學(xué)生掌握分類討論的數(shù)學(xué)思想,可先讓中等學(xué)生講解解題思路,其他同學(xué)補(bǔ)充交流

  5. 反饋練習(xí)(教科書第5頁(yè)的練習(xí))

  6.嘗試小結(jié)

  教師:提示引導(dǎo)學(xué)生總結(jié)本節(jié)課的主要內(nèi)容。

  學(xué)生:思考交流,歸納總結(jié)。

  師生:讓學(xué)生嘗試小結(jié),教師及時(shí)補(bǔ)充,要體現(xiàn):

  (1)正弦定理的內(nèi)容( )及其證明思想方法。

  (2)正弦定理的應(yīng)用范圍:①已知三角形中兩角及一邊,求其他元素;②已知三角形中兩邊和其中一邊所對(duì)的角,求其他元素。

 。3)分類討論的數(shù)學(xué)思想。

  7.作業(yè)設(shè)計(jì)

  作業(yè):第10頁(yè)[習(xí)題1.1]A組第1、2題。

  七.教學(xué)反思

  在本課的教學(xué)中,教師立足于所創(chuàng)設(shè)的情境,通過(guò)學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問(wèn)題、解決問(wèn)題、應(yīng)用反思的過(guò)程,學(xué)生成為正弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí)。

  創(chuàng)設(shè)數(shù)學(xué)情境是這種教學(xué)模式的基礎(chǔ)環(huán)節(jié),教師必須對(duì)學(xué)生的身心特點(diǎn)、知識(shí)水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進(jìn)行綜合考慮,對(duì)可用的情境進(jìn)行比較,選擇具有較好的教育功能的情境。這種教學(xué)模式主張以問(wèn)題為連線組織教學(xué)活動(dòng),以學(xué)生作為提出問(wèn)題的主體,因此,如何引導(dǎo)學(xué)生提出問(wèn)題是教學(xué)成敗的關(guān)鍵。教學(xué)實(shí)驗(yàn)表明,學(xué)生能否提出數(shù)學(xué)問(wèn)題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對(duì)提問(wèn)的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境,而且要真正轉(zhuǎn)變對(duì)學(xué)生提問(wèn)的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵(lì)學(xué)生大膽地提出問(wèn)題,另一方面要妥善處理學(xué)生提出的問(wèn)題。教師還要積極引導(dǎo)學(xué)生對(duì)所提的問(wèn)題進(jìn)行分析、整理,篩選出有價(jià)值的問(wèn)題,注意啟發(fā)學(xué)生揭示問(wèn)題的數(shù)學(xué)實(shí)質(zhì),將提問(wèn)引向深入.

[正弦定理概念教學(xué)設(shè)計(jì)]

【正弦定理概念教學(xué)設(shè)計(jì)】相關(guān)文章:

《正弦定理》教學(xué)案例設(shè)計(jì)分析10-08

初中數(shù)學(xué)正弦定理公式08-11

產(chǎn)品設(shè)計(jì)概念策劃書08-07

初中數(shù)學(xué)定理公式08-14

績(jī)效工資概念08-13

如何確定理想職業(yè)?06-28

小學(xué)數(shù)學(xué)定義定理公式07-13

初中數(shù)學(xué)公式定理05-31

汽車概念簡(jiǎn)歷封面05-24

初中數(shù)學(xué)公式定理大全10-28