- 相關(guān)推薦
Extension of Floquets theory to nonlinear quasiperiodic differential equations
In this paper, we consider the following autonomous system of differential equations:(x) = Ax + f(x, θ), (θ) = ω,where θ∈ Rm, ω = (ω1,...,ωm) ∈ Rm, x ∈ Rn, A ∈ Rn×n is a constant matrix and is hyperbolic, f is a C∞ function in both variables and 2π-periodic in each component of the vector θ which satisfies f = O(‖x‖2) as x → 0. We study the normal form of this system and prove that under some proper conditions this system can be transformed to an autonomous system:(x) = Ax + g(x), (θ) = ω.Additionally, the proof of this paper naturally implies the extension of Chen's theory in the quasi-periodic case.
作 者: WU Hao LI Weigu 作者單位: School of Mathematical Sciences,Peking University,Beijing 100871,China 刊 名: 中國(guó)科學(xué)A輯(英文版) SCI 英文刊名: SCIENCE IN CHINA SERIES A (MATHEMATICS) 年,卷(期): 2005 48(12) 分類(lèi)號(hào): O1 關(guān)鍵詞: quasiperiodic system normal form【Extension of Floquets theory to nonl】相關(guān)文章:
Combined Method of Chaotic Theory and Neural Networks for Water Quality Prediction04-26
Finite element formulation of active constraining layer damping plate using laminate theory04-27
關(guān)于Banach spaces failing the almost isometric universal extension property的一個(gè)注記04-26