小學數(shù)學教案【精】
作為一位兢兢業(yè)業(yè)的人民教師,往往需要進行教案編寫工作,教案是保證教學取得成功、提高教學質(zhì)量的基本條件。來參考自己需要的教案吧!下面是小編收集整理的小學數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
一、復習預習
一、導入:
1、回顧策略:昨天我們學習了解決問題的策略,回想一下,到現(xiàn)在為止,我們學過了哪些策略來解決問題?
總結(jié)歸納:畫圖、列表、倒推、替換
2、提出課題:利用這些策略可以方便地幫助我們解決一些實際問題。今天,我們繼續(xù)來研究解決問題的策略。
二、知識講解
考點:解決問題的策略—假設法分為以下5種情況:
1、已知總頭數(shù)和總腳數(shù),求雞兔各多少只?
(總腳數(shù)—每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)—每只雞的腳數(shù))=兔數(shù)總數(shù)—兔數(shù)=雞數(shù)
或者(總腳數(shù)—每只兔的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)—每只雞的腳數(shù))=雞數(shù)總數(shù)—雞數(shù)=兔數(shù)
2、已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當雞的總腳數(shù)比兔的總腳數(shù)少
(每只雞腳數(shù)×總頭數(shù)+腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù)總數(shù)—兔數(shù)=雞數(shù)
。恐煌媚_數(shù)×總頭數(shù)—腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù)總數(shù)—雞數(shù)=兔數(shù)
3、已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當雞的總腳數(shù)比兔的總腳數(shù)多時
個性化教案
。恐浑u腳數(shù)×總頭數(shù)—腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù)總數(shù)—兔數(shù)=雞數(shù)
(每只兔腳數(shù)×總頭數(shù)+腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù)總數(shù)—雞數(shù)=兔數(shù)4、得失問題
。1只合格品得分數(shù)×產(chǎn)品總數(shù)—實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)。
或者是總產(chǎn)品數(shù)—(每只不合格品扣分數(shù)×總產(chǎn)品數(shù)+實得總分數(shù))÷(每只合格品得分數(shù)+每只不合格品扣分數(shù))=不合格品數(shù)
5、雞兔互換問題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問題)
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù)
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)—(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù)
三、例題精析
【例題1】雞兔同籠共有32只,共有腿100條,有幾只雞?幾只兔?
【題干】雞+兔=32只腿一共100條
【答案】雞:18只兔:14只
【解析】假設32只全部是兔子,這樣就應該有腿4×32=128(條),這比題目已知的100條腿多了128—100=28(條)。為什么會多出28條腿呢?顯然是把其中的雞當作兔子計算了,把一只雞當兔子計算就多出兩條腿,把兩只雞當兔子計算便會多出2個兩條腿,推而廣之:把幾只雞當兔子計算,便會多出幾個兩條腿,因此雞的只數(shù)一定是:28÷2=14(只);兔子的只數(shù)自然是32—14= 18(只)。綜合列式:(4×32)—100)÷(4—2)=28÷2 =14(只)
32—14=18(只)
答:有雞14只,兔18只。
變式訓練:今有雞兔共居一籠,已知雞頭和兔頭共35個,雞腳和兔腳共94只,問雞兔各多少只?
解析:假設全是雞﹙94—35×2﹚÷﹙4-2﹚=24÷2=12(只)兔35—12=23(只)
答:雞有23只,兔有12只、
【例題2】雞與兔共有200只,雞的腳比兔的腳少56只,問雞與兔各多少只?
【題干】總頭數(shù)=200只,兔的腳—雞的腳=56只【答案】雞有124只,兔有76只。
【解析】假設全是雞
。200×2+56﹚÷﹙2+4﹚=456÷6
=76(只)兔的只數(shù)200—76=124(只)雞的只數(shù)答:雞有124只,兔有76只。
變式訓練:現(xiàn)有大、小油瓶共50個,每個大瓶可裝油4千克,每個小瓶可裝油2千克,大瓶比小瓶共多裝20千克。問:大、小瓶各有多少個?解析:假設去拿書大瓶(50×4—20﹚÷﹙4+2﹚=30(個)小瓶50—30=20(個)大瓶答:大瓶有20個,小瓶有30個、
【例題3】雞與兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?
【題干】雞+兔=100只雞的腳—兔的腳=80只
【答案】雞有80只,兔有20只
【解析】假設100只全是雞,那么腳的總數(shù)是2×100=200(只)這時兔的腳數(shù)為0,雞腳
比兔腳多200只,而實際上雞腳比兔腳多80只、因此,雞腳與兔腳的差數(shù)比已知多了(200—80)=120(只),這是因為把其中的兔換成了雞、每把一只兔換成雞,雞的腳數(shù)將增加2只,兔的腳數(shù)減少4只、那么,雞腳與兔腳的差數(shù)增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只)、有雞(100—20)=80(只)。
列示為:(2×100—80)÷(2+4)=20(只)。
100—20=80(只)。
答:雞有80只,兔20只。
變式訓練:
現(xiàn)有大、小油瓶共72個,每個大瓶可裝油5千克,每個小瓶可裝油3千克,大瓶比小瓶少裝40千克。問:大、小瓶各有多少個?解析:假設全是小瓶(72×3-40)÷﹙5+3﹚=176÷8=22(個)大瓶72—22=50(個)
答:大瓶有22個,小瓶有50個、
【例題4】“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個合格品記4分,每生產(chǎn)一個不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?
【題干】合格的得4分,不合格的不記分,還要扣除15分,一共生產(chǎn)1000只,得3525分,求不合格數(shù)?
【答案】25個
【解析】假設全是合格的,應該得到1000×4=4000分,與實際相差4000—3525=475分,這里面有一部分不合格的,因為一個不合格在總分上會少15+4=19分,所以475÷19=25(個)列式為:﹙1000×4-3525﹚÷﹙15+4﹚=475÷19 =25(個)答:不合格的有25個。
變式訓練:
某次數(shù)學競賽共20道題,評分標準是:每做對一題得5分,每做錯或不做一題扣1分.小華參加了這次競賽,得了64分.問:小華做對幾道題?解析:假設全是對的﹙20×5—64﹚÷﹙5+1﹚=36÷6 =6(道)10—6=4(道)
答:小華做對了4道題。
【例題5】有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?
【題干】雞腳+兔腳=44只互換后=52只
【答案】雞有10只,兔有6只
【解析】首先用雞兔互換的數(shù)相加,大家想想,那出來的結(jié)果是什么,是不是雞兔的數(shù)都變成了雞兔的總數(shù),已經(jīng)是變成了雞兔總數(shù)只的六條腿的小怪物,所以(52+44)÷(4+2),得出的是雞兔的和,這時其實就變成了一道普通的雞兔同籠問題了,但如果我們再看看用雞兔互換的數(shù)相減得到的是什么數(shù),為什么交換了會有差捏,因為兔子4條腿,雞2條腿,所以每把一只雞換成一只兔子就會多出兩條腿,所以(52—44)÷(4—2),得出的是雞兔的差。那么這是不是就變成和差問題了,下面大家就能很容易的解答了。雞數(shù):〔(52+44)÷(4+2)+(52—44)÷(4—2)〕÷2=20÷2=10(只)兔數(shù):〔(52+44)÷(4+2)—(52—44)÷(4—2)〕÷2=12÷2=6(只)答:雞有10只,兔有6只、
變式訓練:
雞、兔共有腳100只,若將雞換成兔,兔換成雞,則共有腳86只.問:雞、兔各有幾只?解:兔數(shù):〔(100+86)÷(4+2)+(100—86)÷(4—2)〕÷2=38÷2=19(只)雞數(shù):〔(100+86)÷(4+2)—(100—86)÷(4—2)〕÷2=24÷2=12(只)答:雞有12只,兔有19只。
四、課堂運用
【基礎】
1、小梅數(shù)她家的雞與兔,數(shù)頭有16個,數(shù)腳有44只。問:小梅家的雞與兔各有多少只?
解:有兔(44—2×16)÷(4—2)=6(只),有雞16—6=10(只)。答:有6只兔,10只雞
2、小強愛好集郵,他用1元錢買了4分和8分的兩種郵票,共20張、那么他買了4分郵票多少張?
解析:假設去全是8分的則共有8×20=160分,比實際多出60分是因為把1張4分郵票當成了8分的就會多出4分,60分相當于15張4分的,所以列示為(20?8—100)?(8—4)=15(張)答:4分的有15張、
3、某校有100名學生參加數(shù)學競賽,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同學比女同學多幾人?
解析:假設100名全是男生,則總分是6000分,比實際分數(shù)少了6300—6000=300分,因為我們把其中的女生當成男生了,總數(shù)就會少10分,300分相當于30個女生,列示為:
女生:(63?100—60?100)?(70—60)=30(人)男生:100—30=70(人)70—30=40(人)
答:男同學比女同學多40人、
4、松鼠媽媽采松子,晴天每天采20個,雨天每天可采12個,它一連采了112個,平均每天采14個,這幾天中有幾天是雨天?
解析:題目中它一連采了112個,平均每天采14個,可以算出一共采了112÷14=8天,題目就變成松鼠媽媽采松子,晴天每天采20個,雨天每天可采12個,一共采了8天,共采了112個松子,這幾天有幾天是雨天?
列式為:(112?14?20—112)?(20—12)=6(天)答:這幾天有6天是雨天、
【鞏固】
1、 100個和尚140個饃,大和尚1人分3個饃,小和尚1人分1個饃。問:大、小和尚各有多少人?
解:假設100人全是大和尚,那么共需饃300個,比實際多300-140=160(個),F(xiàn)在以小和尚去換大和尚,每換一個總?cè)藬?shù)不變,而饃就要減少3—1=2(個),因為160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。答:大和尚有20人,小和尚有80人。
2、樂樂百貨商店委托搬運站運送500只花瓶,雙方商定每只運費0、24元,但如果發(fā)生損壞,那么每打破一只不僅不給運費,而且還要賠償1、26元,結(jié)果搬運站共得運費115、5元。問:搬運過程中共打破了幾只花瓶?解析:假設500只花瓶在搬運過程中一只也沒有打破,那么應得運費0、24×500=120(元)。實際上只得到115、5元,少得120—115、5=4、5(元)。搬運站每打破一只花瓶要損失0、24+1、26=1、5(元)。因此共打破花瓶4、5÷1、5=3(只)。
。0.24×500-115.5)÷(0.24+1.26)=3(只)。答:共打破3只花瓶。
3、小朋友們?nèi)澊,大船可以?0人,小船坐6人,小朋友們共租了15只船,已知乘大船的人比乘小船的人多22人,問大船幾只,小船幾只?解析:大船:(6×15+22)÷(6+10)=7(只);小船:15—7=8(只)或者小船:(10×15—22)÷(6+10)=8(只)大船:15—8=7(只)答:大船是7只,小船8只、
4、有黑白棋子一堆,其中黑子的個數(shù)是白子個數(shù)的2倍,如果從這堆棋子中每次同時取出黑子4個,白子3個,那么取出多少次后,白子余1個,而黑子余18個。
由黑子的個數(shù)是白子個數(shù)的2倍,假如每次取出白子2個(黑子的一半)的話,那么最后余下黑子18個,白子應余下18÷2=9(個)
現(xiàn)在只余下一個白子,這是因為實際每次取3個比假設每次多取一個,故共。9—1)÷(3—2)=8(次)答:取出8次后
課程小結(jié)
我們一起回顧一下,剛才我們是怎么樣解決這個問題的?
(1)引導學生整體回顧:先提出假設,假設后的總?cè)藬?shù)與實際人數(shù)不一樣,這時就需要進行調(diào)整,我們可以借助畫圖、列表等方法幫助我們進行調(diào)整,從而推算出正確結(jié)果,最后還要對結(jié)果進行檢驗。(逐一板書:1、假設2、調(diào)整3、檢驗)
(2)突破難點回顧:
a、在借助畫圖和表格進行調(diào)整時,我們又是怎么想的呢?我們先算出假設與實際總數(shù)相差多少,再算算每一份相差多少,最后算出調(diào)整數(shù)量。
b、你是如何確定需要把大船調(diào)整為小船,還是把小船調(diào)整為大船的呢?(結(jié)合板書使學生明確:人數(shù)多了,需要把大船調(diào)整為小船;人數(shù)少了,需要把小船調(diào)整為大船。)
【小學數(shù)學教案】相關文章:
(精選)小學數(shù)學教案07-06
小學數(shù)學教案07-08
小學數(shù)學教案07-08
小學數(shù)學教案07-08
小學數(shù)學教案07-08
小學數(shù)學教案07-13