亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

高中數(shù)學(xué)教案

時間:2024-06-29 11:43:26 高中數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案(15篇)

  作為一位無私奉獻(xiàn)的人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,借助教案可以有效提升自己的教學(xué)能力。那么什么樣的教案才是好的呢?以下是小編收集整理的高中數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)教案(15篇)

高中數(shù)學(xué)教案1

  各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進(jìn)行說課。

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

 。ǘ┙虒W(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計

  本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

  (一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系

  本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

  為此,我設(shè)計了以下幾個問題:

  1、請同學(xué)們解以下方程和不等式:

  ①2x-7=0;②2x-70;③2x-70

  學(xué)生回答,我板書。

  2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質(zhì)就容易得到。

  3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

  4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:

 、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

  交點的橫坐標(biāo)。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的上方的點的橫坐標(biāo)的集合。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的下方的點的橫坐標(biāo)的集合。

  三組關(guān)系的得出,實際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。

  (二)比舊悟新,引出“三個二次”的關(guān)系

  為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。

  看函數(shù)y=x2-x-6的`圖象并說出:

  ①方程x2-x-6=0的解是

  x=-2或x=3 ;

 、诓坏仁絰2-x-60的解集是

  {x|x-2,或x3};

  ③不等式x2-x-60的解集是

  {x|-23}。

  此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

  學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

 。ㄈw納提煉,得出“三個二次”的關(guān)系

  1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。

  2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

 。ㄋ模⿷(yīng)用新知,熟練掌握一元二次不等式的解集

  借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:

  例1、解不等式2x2-3x-20

  解:因為Δ0,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解決達(dá)到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

  下面我們接著學(xué)習(xí)課本例2。

  例2 解不等式-3x2+6x2

  課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。

  通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚。

  4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

 。ㄎ澹┛偨Y(jié)

  解一元二次不等式的“四部曲”:

  (1)把二次項的系數(shù)化為正數(shù)

  (2)計算判別式Δ

  (3)解對應(yīng)的一元二次方程

  (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

  (六)作業(yè)布置

  為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

 。1)必做題:習(xí)題1.5的1、3題

 。2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數(shù)k的取值范圍。

  (七)板書設(shè)計

  一元二次不等式解法(1)

  五、教學(xué)效果評價

  本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗求知的樂趣。

高中數(shù)學(xué)教案2

  一. 學(xué)習(xí)目標(biāo)

  (1)通過實例體會分布的意義與作用; (2)在表示樣本數(shù)據(jù)的過程中,學(xué)會列頻率分布表,畫頻率分布直方圖,頻率折線圖; (3)通過實例體會頻率分布直方圖,頻率折線圖,莖葉圖的各自特點,從而恰當(dāng)?shù)倪x擇上述方法分析樣本的分布,準(zhǔn)確的作出總體估計。

  二. 學(xué)習(xí)重點

  三.學(xué)習(xí)難點

  能通過樣本的頻率分布估計總體的分布。

  四.學(xué)習(xí)過程

  (一)復(fù)習(xí)引入

  (1 )統(tǒng)計的核心問題是什么?

  (2 )隨機抽樣的幾種常用方法有哪些?

  (3)通過抽樣方法收集數(shù)據(jù)的目的是什么?

  (二)自學(xué)提綱

  1.我們學(xué)習(xí)了哪些統(tǒng)計圖?不同的統(tǒng)計圖適合描述什么樣的數(shù)據(jù)?

  2.如何列頻率分布表?

  3.如何畫頻率分布直方圖?基本步驟是什么?

  4.頻率分布直方圖的縱坐標(biāo)是什么?

  5.頻率分布直方圖中小長方形的面積表示什么?

  6.頻率分布直方圖中小長方形的面積之和是多少?

  (三)課前自測

  1.從一堆蘋果中任取了20只,并得到了它們的質(zhì)量(單位:g)數(shù)據(jù)分布表如下:

  分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數(shù) 1 2 3 10 1 則這堆蘋果中,質(zhì)量不小于120g的蘋果數(shù)約占蘋果總數(shù)的.xxx%. 2.關(guān)于頻率分布直方圖,下列說法正確的是( ) a.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻率 b.直方圖的高表示取某數(shù)的頻率 c.直方圖的高表示該組上的樣本中出現(xiàn)的頻率與組距的比值 d.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻數(shù)與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學(xué) 典例:城市缺水問題(自學(xué)教材65頁~68頁)

  問題1.你認(rèn)為為了較為合理地確定出這個標(biāo)準(zhǔn),需要做哪些工作? 2.如何分析數(shù)據(jù)?根據(jù)這些數(shù)據(jù)你能得出用水量其他信息嗎? 知識整理: 1.頻率分布的概念: 頻率分布: 頻數(shù): 頻率:

  2.畫頻率分布直方圖的步驟: (1).求極差: (2).決定組距與組數(shù) 組距: 組數(shù): (3).將數(shù)據(jù)分組 (4).列頻率分布表 (5).畫頻率分布直方圖 問題: .

  1.月平均用水量在2.5—3之間的頻率是多少?

  2.月均用水量最多的在哪個區(qū)間?

  3.月均用水量小于4.5 的頻率是多少?

  4.小長方形的面積=?

  5.小長方形的面積總和=?

  6.如果希望85%以上居民不超出標(biāo)準(zhǔn),如何制定標(biāo)準(zhǔn)?

  7.直方圖有那些優(yōu)點和缺點?

  例題講解: 例1有一個容量為50的樣本數(shù)據(jù)的分組的頻數(shù)如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出樣本的頻率分布表; (2)畫出頻率分布直方圖; (3)根據(jù)頻率分布直方圖估計,數(shù)據(jù)落在[15.5, 24.5)的百分比是多少? (4)數(shù)據(jù)小于21.5的百分比是多少?

  3.頻率分布折線圖、總體密度曲線 問題1:如何得到頻率分布折線圖 ? 頻率分布折線圖的概念:

  問題2:在城市缺水問題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會有什么變化?假如增至10000呢?

  總體密度曲線的概念:

  注:用樣本分布直方圖去估計相應(yīng)的總體分布時,一般樣本容量越大,頻率分布直方圖就會無限接近總體密度曲線,就越精確地反映了總體的分布規(guī)律,即越精確地反映了總體在各個范圍內(nèi)1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計總體的分布。

  4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:

  小結(jié):.總體的分布分兩種情況:當(dāng)總體中的個體取值很少時,用莖葉圖估計總體的分布;當(dāng)總體中的個體取值較多時,將樣本數(shù)據(jù)恰當(dāng)分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。

  課堂小結(jié):

  當(dāng)堂檢測:

  1. 一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10000人, 并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖)。 為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系, 要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步 調(diào)查,則 [2500,3000)(元)月收入段應(yīng)抽取 人。

  2、為了解某校高三學(xué)生的視力情況,隨機抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖(如圖), 由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前四組的頻數(shù)成等比數(shù) 列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視 力在4.6到5.0之間的頻率為b,則

  a+b= . 3.在抽查產(chǎn)品的尺寸過程中,將其尺寸分成若干組,[a,b)是其中的一組,抽查出的個體在該組上的頻率為m,該組上的直方圖的高為h,則ba?=xx. 4.為了了解中學(xué)生的身高情況,對育才中學(xué)同齡的50名男學(xué)生的身高進(jìn)行了測量,結(jié)果如下:(單位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181

  (1)列出樣本的頻率分布表。

  (2)畫出頻率分布直方圖。

  (3)畫頻率分布折線圖;

高中數(shù)學(xué)教案3

  [學(xué)習(xí)目標(biāo)]

 。1)會用坐標(biāo)法及距離公式證明Cα+β;

 。2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

 。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

  [學(xué)習(xí)重點]

  兩角和與差的正弦、余弦、正切公式

  [學(xué)習(xí)難點]

  余弦和角公式的推導(dǎo)

  [知識結(jié)構(gòu)]

  1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

  2、通過下面各組數(shù)的.值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

  4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案4

  一、單元教學(xué)內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學(xué)實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá)解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

  三、單元教學(xué)課時安排:

  1、算法的基本概念3課時

  2、程序框圖與算法的基本結(jié)構(gòu)5課時

  3、算法的基本語句2課時

  四、單元教學(xué)目標(biāo)分析

  1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

  2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進(jìn)一步體會算法的基本思想。

  4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  五、單元教學(xué)重點與難點分析

  1、重點

  (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實際問題

  2、難點

  (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過對實例的認(rèn)真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。

  七、單元展開方式與特點

  1、展開方式

  自然語言→程序框圖→算法語句

  2、特點

  (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學(xué)過程分析

  1.算法基本概念教學(xué)過程分析

  對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

  2.算法的流程圖教學(xué)過程分析

  對生活中的實際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達(dá)解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的.解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

  3.基本算法語句教學(xué)過程分析

  經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進(jìn)一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達(dá)算法,

  4.通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  九、單元評價設(shè)想

  1.重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價

  關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對用集合語言描述數(shù)學(xué)和現(xiàn)實生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會集合語言準(zhǔn)確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數(shù)學(xué)語言進(jìn)行交流的能力。

  2.正確評價學(xué)生的數(shù)學(xué)基礎(chǔ)知識和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

高中數(shù)學(xué)教案5

  一、教學(xué)目標(biāo)

  1、知識與能力目標(biāo)

 、偈箤W(xué)生理解數(shù)列極限的概念和描述性定義。

 、谑箤W(xué)生會判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

 、弁ㄟ^觀察運動和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

  2、過程與方法目標(biāo)

  培養(yǎng)學(xué)生的極限的思想方法和獨立學(xué)習(xí)的能力。

  3、情感、態(tài)度、價值觀目標(biāo)

  使學(xué)生初步認(rèn)識有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點。

  二、教學(xué)重點和難點

  教學(xué)重點:數(shù)列極限的概念和定義。

  教學(xué)難點:數(shù)列極限的“ε―N”定義的理解。

  三、教學(xué)對象分析

  這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對于學(xué)生來說是一個全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時對極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時,數(shù)列{an}中的項an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

  四、教學(xué)策略及教法設(shè)計

  本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個實際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的兩個比較簡單的數(shù)列,運用多媒體課件演示向?qū)W生展示了數(shù)列中的各項隨著項數(shù)的增大,無限地趨向于某個常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個數(shù)列的特征,從而得出數(shù)列極限的一個描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認(rèn)識,接著讓學(xué)生根據(jù)數(shù)列中各項的情況判斷一些簡單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個新的概念,為下節(jié)課的極限的運算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識打下基礎(chǔ)。在整個教學(xué)過程中注意突出重點,突破難點,達(dá)到教學(xué)目標(biāo)的要求。

  五、教學(xué)過程

  1、創(chuàng)設(shè)情境

  課件展示創(chuàng)設(shè)情境動畫。

  今天我們將要學(xué)習(xí)一個很重要的新的知識。

  情境

 。1)我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

  情境

 。2)我國古代哲學(xué)家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會切完?

  大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠(yuǎn)不會變成零。從而引出極限的概念。

  2、定義探究

  展示定義探索(一)動畫演示。

  問題1:請觀察以下無窮數(shù)列,當(dāng)n無限增大時,a,I的變化趨勢有什么特點?

 。1)1/2,2/3,3/4,n/n—1

 。2)0.9,0.99,0.999,0.9999,1—1/10n

  問題2:觀察課件演示,請分析以上兩個數(shù)列隨項數(shù)n的'增大項有那些特點?

  師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項數(shù)n無限增大時,項無限趨近于1;數(shù)列(2)項數(shù)n無限增大時,項無限趨近于1。

  那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個數(shù)列只是形式不同,它們都是隨項數(shù)n的無限增大,項無限趨近于某一確定常數(shù),這個常數(shù)叫做這個數(shù)列的極限。

  那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當(dāng)n無限增大時,an無限趨向于某一個常數(shù)A,則稱A是數(shù)列an的極限。

  提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢?

  展示定義探索(二)動畫演示。

  師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0.0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

  數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時,不等式|an—A|n的極限。

  課件可以實現(xiàn)任意輸入一個n值,可以計算出相應(yīng)的數(shù)列第n項的值,并且動畫演示數(shù)列的變化過程。如圖1所示是課件運行時的一個畫面。

  定義探索動畫(二)課件可以實現(xiàn)任意輸入一個n值,可以計算出相應(yīng)的數(shù)列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。

  3、知識應(yīng)用

  這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

  例1、已知數(shù)列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計算an—0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。

  (3)確定這個數(shù)列的極限。

  例2、已知數(shù)列:

  已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。

  猜測這個數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017

  例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。

  4、知識小結(jié)

  這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認(rèn)識。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

  課后練習(xí):

 。1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

 。2)課本練習(xí)1,2。

  5、探究性問題

  設(shè)計研究性學(xué)習(xí)的思考題。

  提出問題:

  芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因為當(dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c時,烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?

  這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識去解決生活中遇到的實際問題的習(xí)慣。

高中數(shù)學(xué)教案6

  整體設(shè)計

  教學(xué)分析

  我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運算性質(zhì)。從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實數(shù)指數(shù),并將冪的運算性質(zhì)由整數(shù)指數(shù)冪推廣到實數(shù)指數(shù)冪。

  教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題。前一個問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價值。后一個問題讓學(xué)生體會其中的函數(shù)模型的同時,激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊。

  本節(jié)安排的內(nèi)容蘊涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時,充分關(guān)注與實際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。

  根據(jù)本節(jié)內(nèi)容的特點,教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。

  三維目標(biāo)

  1、通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。

  2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過運算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理。

  3、能熟練地運用有理指數(shù)冪運算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計算能力。

  4、通過訓(xùn)練及點評,讓學(xué)生更能熟練掌握指數(shù)冪的運算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗數(shù)學(xué)的簡潔美和統(tǒng)一美。

  重點難點

  教學(xué)重點

 。1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。

 。2)掌握并運用分?jǐn)?shù)指數(shù)冪的運算性質(zhì)。

 。3)運用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值。

  教學(xué)難點

  (1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。

 。2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。

  課時安排

  3課時

  教學(xué)過程

  第1課時

  作者:路致芳

  導(dǎo)入新課

  思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算。

  思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算。

  推進(jìn)新課

  新知探究

  提出問題

  (1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾個,立方根呢?

 。2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?

  (3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?

 。4)可否用一個式子表達(dá)呢?

  活動:教師提示,引導(dǎo)學(xué)生回憶初中的時候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價學(xué)生的思維。

  討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立方根只有一個,如:-8的立方根為-2.

  (2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根。一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根。一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根。

  (3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根。

 。4)用一個式子表達(dá)是,若xn=a,則x叫a的n次方根。

  教師板書n次方根的意義:

  一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。

  可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。

  提出問題

 。1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。

 、4的平方根;②±8的立方根;③16的`4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

 。2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點?

 。3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個的,也有兩個的,你能否總結(jié)一般規(guī)律呢?

 。4)任何一個數(shù)a的偶次方根是否存在呢?

  活動:教師提示學(xué)生切實緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點,對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時表揚,對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路。

  討論結(jié)果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

  (2)方根的指數(shù)是2,3,4,5,7…特點是有奇數(shù)和偶數(shù)。總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零。

  (3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根有兩個,是互為相反數(shù)。0的任何次方根都是0.

  (4)任何一個數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因為沒有一個數(shù)的偶次方是一個負(fù)數(shù)。

  類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):

 、佼(dāng)n為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。

 、趎為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示。

 、圬(fù)數(shù)沒有偶次方根;0的任何次方根都是零。

  上面的文字語言可用下面的式子表示:

  a為正數(shù):n為奇數(shù),a的n次方根有一個為na,n為偶數(shù),a的n次方根有兩個為±na.

  a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個為na,n為偶數(shù),a的n次方根不存在。

  零的n次方根為零,記為n0=0.

  可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。

  思考

  根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?

  活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學(xué)生,隨機給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學(xué)生在舉例過程中的問題。

  解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個名稱——根式。

  根式的概念:

  式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。

  如3-27中,3叫根指數(shù),-27叫被開方數(shù)。

  思考

  nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

  活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實例,分組討論。教師點撥,注意歸納整理。

  〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

  解答:根據(jù)n次方根的意義,可得:(na)n=a.

  通過探究得到:n為奇數(shù),nan=a.

  n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.

  因此我們得到n次方根的運算性質(zhì):

 、(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù)。

 、趎為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù)。

  n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值。

  應(yīng)用示例

  思路1

  例求下列各式的值:

  (1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

  活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥。求下列各式的值實際上是求數(shù)的方根,可按方根的運算性質(zhì)來解,首先要搞清楚運算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù)。

  解:(1)3(-8)3=-8;

 。2)(-10)2=10;

 。3)4(3-π)4=π-3;

 。4)(a-b)2=a-b(a>b)。

  點評:不注意n的奇偶性對式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用。

  變式訓(xùn)練

  求出下列各式的值:

  (1)7(-2)7;

  (2)3(3a-3)3(a≤1);

  (3)4(3a-3)4.

  解:(1)7(-2)7=-2,

  (2)3(3a-3)3(a≤1)=3a-3,

  (3)4(3a-3)4=

  點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。

  思路2

  例1下列各式中正確的是()

  A.4a4=a

  B.6(-2)2=3-2

  C.a0=1

  D.10(2-1)5=2-1

  活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運算的實質(zhì),學(xué)生先思考哪些地方容易出錯,再回答。

  解析:(1)4a4=a,考查n次方根的運算性質(zhì),當(dāng)n為偶數(shù)時,應(yīng)先寫nan=|a|,故A項錯。

  (2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項錯。

  (3)a0=1是有條件的,即a≠0,故C項也錯。

  (4)D項是一個正數(shù)的偶次方根,根據(jù)運算順序也應(yīng)如此,故D項正確。所以答案選D.

  答案:D

  點評:本題由于考查n次方根的運算性質(zhì)與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細(xì)心。

  例2 3+22+3-22=__________.

  活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。

  解析:因為3+22=1+22+(2)2=(1+2)2=2+1,

  3-22=(2)2-22+1=(2-1)2=2-1,

  所以3+22+3-22=22.

  答案:22

  點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式。

  思考

  上面的例2還有別的解法嗎?

  活動:教師引導(dǎo),去根號常常利用完全平方公式,有時平方差公式也可,同學(xué)們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消。同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法。

  另解:利用整體思想,x=3+22+3-22,

  兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

  點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解。

  變式訓(xùn)練

  若a2-2a+1=a-1,求a的取值范圍。

  解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

  即a-1≥0,

  所以a≥1.

  點評:利用方根的運算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵。

  知能訓(xùn)練

  (教師用多媒體顯示在屏幕上)

  1、以下說法正確的是()

  A.正數(shù)的n次方根是一個正數(shù)

  B.負(fù)數(shù)的n次方根是一個負(fù)數(shù)

  C.0的n次方根是零

  D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)

  答案:C

  2、化簡下列各式:

  (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

  答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

  3、計算7+40+7-40=__________.

  解析:7+40+7-40

  =(5)2+25?2+(2)2+(5)2-25?2+(2)2

  =(5+2)2+(5-2)2

  =5+2+5-2

  =25.

  答案:25

  拓展提升

  問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明。

  活動:組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義。

  通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時,n為奇數(shù)時討論一下。再對a是負(fù)數(shù),n為偶數(shù)時,n為奇數(shù)時討論一下,就可得到相應(yīng)的結(jié)論。

  解:(1)(na)n=a(n>1,n∈N)。

  如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個n次方根,所以(na)n=a恒成立。

  例如:(43)4=3,(3-5)3=-5.

  (2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。

  當(dāng)n為奇數(shù)時,a∈R,nan=a恒成立。

  例如:525=2,5(-2)5=-2.

  當(dāng)n為偶數(shù)時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

  即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。

  點評:實質(zhì)上是對n次方根的概念、性質(zhì)以及運算性質(zhì)的深刻理解。

  課堂小結(jié)

  學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。

  1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。

 。1)當(dāng)n為偶數(shù)時,a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。

  (2)n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示。

  (3)負(fù)數(shù)沒有偶次方根。0的任何次方根都是零。

  2、掌握兩個公式:n為奇數(shù)時,(na)n=a,n為偶數(shù)時,nan=|a|=a,-a,a≥0,a<0.

  作業(yè)

  課本習(xí)題2.1A組1.

  補充作業(yè):

  1、化簡下列各式:

  (1)681;(2)15-32;(3)6a2b4.

  解:(1)681=634=332=39;

  (2)15-32=-1525=-32;

  (3)6a2b4=6(|a|?b2)2=3|a|?b2.

  2、若5

  解析:因為5

  答案:2a-13

  3.5+26+5-26=__________.

  解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,

  不難看出5+26=(3+2)2=3+2.

  同理5-26=(3-2)2=3-2.

  所以5+26+5-26=23.

  答案:23

  設(shè)計感想

  學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時,要結(jié)合已學(xué)內(nèi)容,列舉具體實例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結(jié)合具體例子講解,因此設(shè)計了大量的類比和練習(xí)題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué)。

  第2課時

  作者:郝云靜

  導(dǎo)入新課

  思路1.碳14測年法。原來宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內(nèi)保持一定的水平。而當(dāng)有機體死亡后,即會停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過一定的時間,變?yōu)樵瓉淼囊话耄。引出本?jié)課題:指數(shù)與指數(shù)冪的運算之分?jǐn)?shù)指數(shù)冪。

  思路2.同學(xué)們,我們在初中學(xué)習(xí)了整數(shù)指數(shù)冪及其運算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運算之分?jǐn)?shù)指數(shù)冪。

  推進(jìn)新課

  新知探究

  提出問題

 。1)整數(shù)指數(shù)冪的運算性質(zhì)是什么?

 。2)觀察以下式子,并總結(jié)出規(guī)律:a>0,

 、;

 、赼8=(a4)2=a4=,;

 、4a12=4(a3)4=a3=;

 、2a10=2(a5)2=a5= 。

 。3)利用(2)的規(guī)律,你能表示下列式子嗎?

  ,,,(x>0,m,n∈正整數(shù)集,且n>1)。

 。4)你能用方根的意義來解釋(3)的式子嗎?

  (5)你能推廣到一般的情形嗎?

  活動:學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會方根的意義,用方根的意義加以解釋,指點啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學(xué)及時表揚,其他學(xué)生鼓勵提示。

  討論結(jié)果:(1)整數(shù)指數(shù)冪的運算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;

  a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

 。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變。

  根據(jù)4個式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時,根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。

  (3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。

  (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

  結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。

  (5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。

  綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:

  規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。

  提出問題

 。1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?

 。2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?

  (3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?

 。4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?

  (5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產(chǎn)生什么樣的后果?

  (6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?

  活動:學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運算性質(zhì)類比可得有理數(shù)指數(shù)冪的運算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價。

  討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。

 。2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。

  規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。

  (3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。

 。4)教師板書分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:

  正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。

  (5)若沒有a>0這個條件會怎樣呢?

  如=3-1=-1,=6(-1)2=1具有同樣意義的兩個式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時是無意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時,切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時,應(yīng)把負(fù)號移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。

 。6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。

  有理數(shù)指數(shù)冪的運算性質(zhì):對任意的有理數(shù)r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈Q),

  ②(ar)s=ars(a>0,r,s∈Q),

 、(a?b)r=arbr(a>0,b>0,r∈Q)。

  我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質(zhì)可以解決一些問題,來看下面的例題。

  應(yīng)用示例

  例1求值:(1);(2);(3)12-5;(4) 。

  活動:教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運算性質(zhì)計算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來。

  解:(1) =22=4;

 。2)=5-1=15;

  (3)12-5=(2-1)-5=2-1×(-5)=32;

 。4)=23-3=278.

  點評:本例主要考查冪值運算,要按規(guī)定來解。在進(jìn)行冪值運算時,要首先考慮轉(zhuǎn)化為指數(shù)運算,而不是首先轉(zhuǎn)化為熟悉的根式運算,如=382=364=4.

  例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。

  a3?a;a2?3a2;a3a(a>0)。

  活動:學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運算性質(zhì)來運算,根式化為分?jǐn)?shù)指數(shù)冪時,要由里往外依次進(jìn)行,把握好運算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價學(xué)生的解題情況,鼓勵學(xué)生注意總結(jié)。

  解:a3?a=a3? =;

  a2?3a2=a2? =;

  a3a= 。

  點評:利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質(zhì)進(jìn)行根式運算時,其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運算性質(zhì)來運算。對于計算的結(jié)果,不強求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。

  例3計算下列各式(式中字母都是正數(shù))。

 。1);

 。2)。

  活動:先由學(xué)生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內(nèi)的,整數(shù)冪的運算性質(zhì)及運算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進(jìn)行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進(jìn)行計算,熟悉后可以簡化步驟。

  解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

  (2)=m2n-3=m2n3.

  點評:分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運算法則進(jìn)行運算了。

  本例主要是指數(shù)冪的運算法則的綜合考查和應(yīng)用。

  變式訓(xùn)練

  求值:(1)33?33?63;

  (2)627m3125n64.

  解:(1)33?33?63= =32=9;

  (2)627m3125n64= =9m225n4=925m2n-4.

  例4計算下列各式:

 。1)(325-125)÷425;

  (2)a2a?3a2(a>0)。

  活動:先由學(xué)生觀察以上兩個式子的特征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運算法則計算,最后寫出解答。

  解:(1)原式=

  = =65-5;

  (2)a2a?3a2= =6a5.

  知能訓(xùn)練

  課本本節(jié)練習(xí)1,2,3

  【補充練習(xí)】

  教師用實物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表揚鼓勵。

  1、(1)下列運算中,正確的是()

  A.a2?a3=a6 B.(-a2)3=(-a3)2

  C.(a-1)0=0 D.(-a2)3=-a6

 。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()

  A.①② B.①③ C.①②③④ D.①③④

 。3)(34a6)2?(43a6)2等于()

  A.a B.a2 C.a3 D.a4

  (4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為()

  A. B.

  C. D.

 。5)化簡的結(jié)果是()

  A.6a B.-a C.-9a D.9a

  2、計算:(1) --17-2+ -3-1+(2-1)0=__________.

  (2)設(shè)5x=4,5y=2,則52x-y=__________.

  3、已知x+y=12,xy=9且x

  答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

  3、解:。

  因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

  又因為x

  所以原式= =12-6-63=-33.

  拓展提升

  1、化簡:。

  活動:學(xué)生觀察式子特點,考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對原式進(jìn)行因式分解,根據(jù)本題的特點,注意到:

  x-1= -13=;

  x+1= +13=;

  。

  構(gòu)建解題思路教師適時啟發(fā)提示。

  解:

  =

  =

  =

  = 。

  點撥:解這類題目,要注意運用以下公式,

  =a-b,

  =a± +b,

  =a±b.

  2、已知,探究下列各式的值的求法。

  (1)a+a-1;(2)a2+a-2;(3) 。

  解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;

 。2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;

 。3)由于,

  所以有=a+a-1+1=8.

  點撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。

  課堂小結(jié)

  活動:教師,本節(jié)課同學(xué)們有哪些收獲?請把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時教師用投影儀顯示本堂課的知識要點:

  (1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。

  (2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。

 。3)有理數(shù)指數(shù)冪的運算性質(zhì):對任意的有理數(shù)r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈Q),

 、(ar)s=ars(a>0,r,s∈Q),

 、(a?b)r=arbr(a>0,b>0,r∈Q)。

  (4)說明兩點:

 、俜?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系。

 、谡麛(shù)指數(shù)冪的運算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來計算。

  作業(yè)

  課本習(xí)題2.1A組2,4.

  設(shè)計感想

  本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強化訓(xùn)練,鞏固知識,要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù)。

  第3課時

  作者:鄭芳鳴

  導(dǎo)入新課

  思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實數(shù)。并且知道,在有理數(shù)到實數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù)。對無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運算(3)〕之無理數(shù)指數(shù)冪。

  思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識,對函數(shù)有了一個初步的了解,到了高中,我們又對函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識,我們必須學(xué)習(xí)實數(shù)指數(shù)冪的運算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。

  推進(jìn)新課

  新知探究

  提出問題

 。1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

 。2)多媒體顯示以下圖表:同學(xué)們從上面的兩個表中,能發(fā)現(xiàn)什么樣的規(guī)律?

  2的過剩近似值

  的近似值

  1.5 11.180 339 89

  1.42 9.829 635 328

  1.415 9.750 851 808

  1.414 3 9.739 872 62

  1.414 22 9.738 618 643

  1.414 214 9.738 524 602

  1.414 213 6 9.738 518 332

  1.414 213 57 9.738 517 862

  1.414 213 563 9.738 517 752

  … …

  的近似值

  2的不足近似值

  9.518 269 694 1.4

  9.672 669 973 1.41

  9.735 171 039 1.414

  9.738 305 174 1.414 2

  9.738 461 907 1.414 21

  9.738 508 928 1.414 213

  9.738 516 765 1.414 213 5

  9.738 517 705 1.414 213 56

  9.738 517 736 1.414 213 562

  … …

 。3)你能給上述思想起個名字嗎?

 。4)一個正數(shù)的無理數(shù)次冪到底是一個什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過的知識,能作出判斷并合理地解釋嗎?

 。5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎?

  活動:教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時評價學(xué)生,學(xué)生有困惑時加以解釋,可用多媒體顯示輔助內(nèi)容:

  問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。

  問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。

  問題(3)上述方法實際上是無限接近,最后是逼近。

  問題(4)對問題給予大膽猜測,從數(shù)軸的觀點加以解釋。

  問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。

  討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值。

  (2)第一個表:從大于2的方向逼近2時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

  第二個表:從小于2的方向逼近2時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

  從另一角度來看這個問題,在數(shù)軸上近似地表示這些點,數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實上表示這些數(shù)的點從兩個方向向表示的點靠近,但這個點一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個實數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

  充分表明是一個實數(shù)。

 。3)逼近思想,事實上里面含有極限的思想,這是以后要學(xué)的知識。

 。4)根據(jù)(2)(3)我們可以推斷是一個實數(shù),猜測一個正數(shù)的無理數(shù)次冪是一個實數(shù)。

 。5)無理數(shù)指數(shù)冪的意義:

  一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù)。

  也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個實數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個確定的實數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實數(shù)指數(shù)冪。

  提出問題

 。1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時,必須規(guī)定底數(shù)是正數(shù)?

 。2)無理數(shù)指數(shù)冪的運算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運算法則相通呢?

 。3)你能給出實數(shù)指數(shù)冪的運算法則嗎?

  活動:教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納。

  對問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時對底數(shù)的規(guī)定,舉例說明。

  對問題(2)結(jié)合有理數(shù)指數(shù)冪的運算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù),那么無理數(shù)指數(shù)冪的運算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運算法則類似,并且相通。

  對問題(3)有了有理數(shù)指數(shù)冪的運算法則和無理數(shù)指數(shù)冪的運算法則,實數(shù)的運算法則自然就得到了。

  討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個確定的實數(shù),就不會再造成混亂。

  (2)因為無理數(shù)指數(shù)冪是一個確定的實數(shù),所以能進(jìn)行指數(shù)的運算,也能進(jìn)行冪的運算,有理數(shù)指數(shù)冪的運算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運算性質(zhì)可以得到無理數(shù)指數(shù)冪的運算法則:

 、賏r?as=ar+s(a>0,r,s都是無理數(shù))。

 、冢╝r)s=ars(a>0,r,s都是無理數(shù))。

  ③(a?b)r=arbr(a>0,b>0,r是無理數(shù))。

 。3)指數(shù)冪擴(kuò)充到實數(shù)后,指數(shù)冪的運算性質(zhì)也就推廣到了實數(shù)指數(shù)冪。

  實數(shù)指數(shù)冪的運算性質(zhì):

  對任意的實數(shù)r,s,均有下面的運算性質(zhì):

  ①ar?as=ar+s(a>0,r,s∈R)。

  ②(ar)s=ars(a>0,r,s∈R)。

 、(a?b)r=arbr(a>0,b>0,r∈R)。

  應(yīng)用示例

  例1利用函數(shù)計算器計算。(精確到0.001)

  (1)0.32.1;(2)3.14-3;(3);(4) 。

  活動:教師教會學(xué)生利用函數(shù)計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;

  對于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號-鍵,再按3,最后按=即可;

  對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;

  對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時也可按2ndf或shift鍵,使用鍵上面的功能去運算。

  學(xué)生可以相互交流,挖掘計算器的用途。

  解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

  點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點后n位,只需看第(n+1)位能否進(jìn)位即可。

  例2求值或化簡。

  (1)a-4b23ab2(a>0,b>0);

 。2)(a>0,b>0);

  (3)5-26+7-43-6-42.

  活動:學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運算,教師有針對性地提示引導(dǎo),對(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運算性質(zhì),對(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(3)有多重根號的式子,應(yīng)先去根號,這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時的評價,注意總結(jié)解題的方法和規(guī)律。

  解:(1)a-4b23ab2= =3b46a11 。

  點評:根式的運算常;蓛绲倪\算進(jìn)行,計算結(jié)果如沒有特殊要求,就用根式的形式來表示。

高中數(shù)學(xué)教案7

  一、教材分析

  1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學(xué)目標(biāo):

  知識目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

  (2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

  能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。

  德育目標(biāo):(1)使學(xué)生認(rèn)識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,增強學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。

  情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。

  3、重點、難點:

  重點:“二面角”和“二面角的平面角”的概念

  難點:“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學(xué)方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導(dǎo)、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓(xùn)練法、探究研討法為主。

 。、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預(yù)計學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

  3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強直觀教學(xué),還要預(yù)先做好一些二面角的模型。

  三、學(xué)法指導(dǎo)

  1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的.好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認(rèn)知結(jié)構(gòu)。

  3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

  四、教學(xué)過程

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

 。ㄒ唬⒍娼

  1、揭示概念產(chǎn)生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

  問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

  問題情境4、那么,應(yīng)該如何定義二面角呢?

  創(chuàng)設(shè)這個問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。

  問題情境5、同學(xué)們能舉出一些二面角的實例嗎?通過實際運用,可以促使學(xué)生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過程

 。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。

  問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。

  問題情境9、這個平面的角的頂點及兩邊是如何確定的?

 。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習(xí)慣,這對強化他們的創(chuàng)新意識大有幫助。

  問題情境10、那么,這個角的頂點及兩邊應(yīng)如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

 。3)、探索實驗。通過實驗,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動手操作能力。

 。4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

 。5)、自我驗證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

 。ㄈ、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模、范例分析

  為鞏固學(xué)生所學(xué)知識,由于時間的關(guān)系設(shè)置了一道例題。來源于實際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會到數(shù)學(xué)概念來自生活實際,并服務(wù)于生活實際,從而增強他們應(yīng)用數(shù)學(xué)的意識。

  例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

  分析:涉及二面角的計算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓(xùn)練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓(xùn)練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

 。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹、練習(xí)、小結(jié)與作業(yè)

  練習(xí):習(xí)題9.7的第3題

  小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法。

  作業(yè):習(xí)題9.7的第4題

  思考題:見例題

  五、板書設(shè)計(見課件)

  以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!

高中數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  理解數(shù)列的概念,掌握數(shù)列的運用

  教學(xué)重難點

  理解數(shù)列的概念,掌握數(shù)列的運用

  教學(xué)過程

  【知識點精講】

  1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))

  2、通項公式:數(shù)列的.第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。

  (通項公式不)

  3、數(shù)列的表示:

  (1)列舉法:如1,3,5,7,9……;

  (2)圖解法:由(n,an)點構(gòu)成;

  (3)解析法:用通項公式表示,如an=2n+1

  (4)遞推法:用前n項的值與它相鄰的項之間的關(guān)系表示各項,如a1=1,an=1+2an-1

  4、數(shù)列分類:有窮數(shù)列,無窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動數(shù)列,常數(shù)數(shù)列;有界數(shù)列,xx數(shù)列

  5、任意數(shù)列{an}的前n項和的性質(zhì)

高中數(shù)學(xué)教案9

  三維目標(biāo):

  1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數(shù)表法的一般步驟;

  2、過程與方法:

  (1)能夠從現(xiàn)實生活或其他學(xué)科中提出具有一定價值的統(tǒng)計問題;

  (2)在解決統(tǒng)計問題的過程中,學(xué)會用簡單隨機抽樣的方法從總體中抽取樣本。

  3、情感態(tài)度與價值觀:通過對現(xiàn)實生活和其他學(xué)科中統(tǒng)計問題的提出,體會數(shù)學(xué)知識與現(xiàn)實世界及各學(xué)科知識之間的聯(lián)系,認(rèn)識數(shù)學(xué)的重要性。

  4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識從總體中抽取樣本。

  教學(xué)方法:

  講練結(jié)合法

  教學(xué)用具:

  多媒體

  課時安排:

  1課時

  教學(xué)過程:

  一、問題情境

  假設(shè)你作為一名食品衛(wèi)生工作人員,要對某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗,你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?

  二、探究新知

  1、統(tǒng)計的有關(guān)概念:總體:在統(tǒng)計學(xué)中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數(shù)目叫做樣本的容量、統(tǒng)計的基本思想:用樣本去估計總體、

  2、簡單隨機抽樣的概念一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。

  下列抽樣的方式是否屬于簡單隨機抽樣?為什么?

  (1)從無限多個個體中抽取50個個體作為樣本。

  (2)箱子里共有100個零件,從中選出10個零件進(jìn)行質(zhì)量檢驗,在抽樣操作中,從中任意取出一個零件進(jìn)行質(zhì)量檢驗后,再把它放回箱子。

  (3)從8臺電腦中,不放回地隨機抽取2臺進(jìn)行質(zhì)量檢查(假設(shè)8臺電腦已編好號,對編號隨機抽取)

  3、常用的簡單隨機抽樣方法有:

  (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

  思考?你認(rèn)為抽簽法有什么優(yōu)點和缺點:當(dāng)總體中的個體數(shù)很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來做游戲,請設(shè)計一個抽取的方法,要使得每位同學(xué)被抽到的機會相等。

  分析:可以把57位同學(xué)的學(xué)號分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬螅趶闹袀抽出8張紙片,再選出紙片上的學(xué)號對應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準(zhǔn)備N個號簽分別標(biāo)上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續(xù)取n次;第三步:將取出的n個號簽上的號碼所對應(yīng)的n個個體作為樣本。

  (2)隨機數(shù)法的定義:利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進(jìn)行抽樣,叫隨機數(shù)表法,這里僅介紹隨機數(shù)表法。怎樣利用隨機數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗,利用隨機數(shù)表抽取樣本時,可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號,可以編為000,001,799。

  第二步,在隨機數(shù)表中任選一個數(shù),例如選出第8行第7列的`數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個三位數(shù)785,由于785<799,說明號碼785在總體內(nèi),將它取出;

  繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。

  三、課堂練習(xí)

  四、課堂小結(jié)

  1、簡單隨機抽樣的概念一般地,設(shè)一個總體的個體數(shù)為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。

  2、簡單隨機抽樣的方法:抽簽法隨機數(shù)表法

  五、課后作業(yè)

  P57練習(xí)1、2

  六、板書設(shè)計

  1、統(tǒng)計的有關(guān)概念

  2、簡單隨機抽樣的概念

  3、常用的簡單隨機抽樣方法有:(1)抽簽法(2)隨機數(shù)表法

  4、課堂練習(xí)

高中數(shù)學(xué)教案10

  一、教學(xué)目標(biāo):

  掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  二、教學(xué)重點:

  向量的性質(zhì)及相關(guān)知識的`綜合應(yīng)用。

  三、教學(xué)過程:

 。ㄒ唬┲饕R:

  1、掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

 。ǘ├}分析:略

  四、小結(jié):

  1、進(jìn)一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應(yīng)用問題,

  2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。

  五、作業(yè):

  略

高中數(shù)學(xué)教案11

  1.教學(xué)目標(biāo)

  (1)知識目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

  2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強學(xué)生用數(shù)學(xué)的意識.

  (3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  2.教學(xué)重點.難點

  (1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

  當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

  3.教學(xué)過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  [引導(dǎo)] 畫圖建系

  [學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

  解:以某一截面半圓的'圓心為坐標(biāo)原點,半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學(xué)生活動] 探究圓的方程。

  [教師預(yù)設(shè)] 方法一:坐標(biāo)法

  如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應(yīng)用舉例(鞏固提高)

  i.直接應(yīng)用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點 ,圓心在點 .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應(yīng)用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學(xué)生活動]探究方法

  [教師預(yù)設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .

  iii.實際應(yīng)用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實際問題情境]

  (四)反饋訓(xùn)練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

高中數(shù)學(xué)教案12

  教學(xué)要求:

  理解曲線交點與方程組的解的關(guān)系,掌握直線與曲線位置關(guān)系的討論,能熟練地求曲線交點。

  教學(xué)重點:

  熟練地求交點。

  教學(xué)過程:

 一、復(fù)習(xí)準(zhǔn)備:

  1、直線A x+B+C=0與直線A x+B+C=0,平行的充要條件是xx,相交的充要條件是xx;

  重合的充要條件是xx,垂直的充要條件是xx。

  2、知識回顧:充分條件、必要條件、充要條件。

二、講授新課:

  1、教學(xué)例題:

  ①出示例:求直線=x+1截曲線=x所得線段的中點坐標(biāo)。

 、谟蓪W(xué)生分析求解的思路→學(xué)生練→老師評講

  (聯(lián)立方程組→消用韋達(dá)定理求x坐標(biāo)→用直線方程求坐標(biāo))

 、墼嚽蟆喺〗Y(jié)思路!冾}:求弦長

 、艹鍪纠寒(dāng)b為何值時,直線=x+b與曲線x+=4分別相交?相切?相離?

 、莘治觯喝N位置關(guān)系與兩曲線的交點情況有何關(guān)系?

 、迣W(xué)生試求→訂正→小結(jié)思路。

  ⑦討論其它解法?

  解一:用圓心到直線的距離求解;

  解二:用數(shù)形結(jié)合法進(jìn)行分析。

 、嘤懻摚簝蓷l曲線F(x,)=0與F(x,)=0相交的`充要條件是什么?

  如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關(guān)系?

 。(lián)立方程組后,一解時:相切或相交;二解時:相交;無解時:相離)

  2、練習(xí):

  求過點(—2,—)且與拋物線=x相切的直線方程。

三、鞏固練習(xí):

  1、若兩直線x+=3a,x-=a的交點在圓x+=5上,求a的值。

 。ù鸢福篴=±1)

  2、求直線=2x+3被曲線=x截得的線段長。

  3、課堂作業(yè):書P72 3、4、10題。

高中數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1。通過生活中優(yōu)化問題的學(xué)習(xí),體會導(dǎo)數(shù)在解決實際問題中的作用,促進(jìn)

  學(xué)生全面認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。

  2。通過實際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。

  教學(xué)重點:

  如何建立實際問題的目標(biāo)函數(shù)是教學(xué)的重點與難點。

  教學(xué)過程:

  一、問題情境

  問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?

  問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最?

  問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最?

  二、新課引入

  導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題。

  1。幾何方面的應(yīng)用(面積和體積等的最值)。

  2。物理方面的應(yīng)用(功和功率等最值)。

  3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤方面最值)。

  三、知識建構(gòu)

  例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?

  說明1解應(yīng)用題一般有四個要點步驟:設(shè)——列——解——答。

  說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極

  值及端點值比較即可。

  例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才

  能使所用的材料最省?

  變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?

  說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。

  說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:

  S1列:列出函數(shù)關(guān)系式。

  S2求:求函數(shù)的導(dǎo)數(shù)。

  S3述:說明函數(shù)在定義域內(nèi)僅有一個極大(。┲,從而斷定為函數(shù)的最大(。┲,必要時作答。

  例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為

  多大時,才能使電功率最大?最大電功率是多少?

  說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。

  例4強度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最?試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的'平方成反比)。

  例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

  (1)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?

 。2)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?

  四、課堂練習(xí)

  1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

  2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時,它的面積最大。

  3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?

  4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h(yuǎn)和下底邊長b。

  五、回顧反思

  (1)解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義。

 。2)根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。

 。3)相當(dāng)多有關(guān)最值的實際問題用導(dǎo)數(shù)方法解決較簡單。

  六、課外作業(yè)

  課本第38頁第1,2,3,4題。

高中數(shù)學(xué)教案14

  一、預(yù)習(xí)目標(biāo)

  預(yù)習(xí)《平面向量應(yīng)用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。

  二、預(yù)習(xí)內(nèi)容

  閱讀課本內(nèi)容,整理例題,結(jié)合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:

  1、例1如果不用向量的方法,還有其他證明方法嗎?

  2、利用向量方法解決平面幾何問題的“三步曲”是什么?

  3、例3中,

  ⑴為何值時,|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|嗎?為什么?

  三、提出疑惑

  同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。

  課內(nèi)探究學(xué)案

  一、學(xué)習(xí)內(nèi)容

  1、運用向量的有關(guān)知識(向量加減法與向量數(shù)量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。

  2、運用向量的有關(guān)知識解決簡單的物理問題。

  二、學(xué)習(xí)過程

  探究一:

 。1)向量運算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會?

 。2)舉出幾個具有線性運算的幾何實例。

  例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。

  已知:平行四邊形ABCD。

  求證:

  試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?

  (1)建立平面幾何與向量的聯(lián)系,

 。2)通過向量運算,研究幾何元素之間的關(guān)系,

 。3)把運算結(jié)果“翻譯”成幾何關(guān)系。

  例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

  探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?

  例3,在日常生活中,你是否有這樣的經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

  請同學(xué)們結(jié)合剛才這個問題,思考下面的問題:

 、艦楹沃禃r,|F1|最小,最小值是多少?

 、苵F1|能等于|G|嗎?為什么?

  例4如圖,一條河的兩岸平行,河的.寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?

  變式訓(xùn)練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子B相對粒子A的位移s;(2)計算s在方向上的投影。

  三、反思總結(jié)

  結(jié)合圖形特點,選定正交基底,用坐標(biāo)表示向量進(jìn)行運算解決幾何問題,體現(xiàn)幾何問題。

  代數(shù)化的特點,數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。

  本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標(biāo)法,以及用向量解決實際問題的步驟。

高中數(shù)學(xué)教案15

  教學(xué)目的:掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

  教學(xué)重點:圓的標(biāo)準(zhǔn)方程及有關(guān)運用

  教學(xué)難點:標(biāo)準(zhǔn)方程的靈活運用

  教學(xué)過程:

  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識,鞏固練習(xí)

  練習(xí):⒈說出下列圓的方程

 、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

  ⑴(x-2)2+(y+3)2=3

 、苮2+y2=2

  ⑶x2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的`方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4

【高中數(shù)學(xué)教案】相關(guān)文章:

數(shù)學(xué)教案高中教學(xué)06-11

高中必修數(shù)學(xué)教案01-07

高中數(shù)學(xué)教案10-26

高中必修4數(shù)學(xué)教案03-13

高中數(shù)學(xué)教案09-28

高中數(shù)學(xué)教案[通用]06-22

高中數(shù)學(xué)教案【推薦】05-26

【集合】高中數(shù)學(xué)教案05-22

高中數(shù)學(xué)教案[優(yōu)]05-20

高中高二數(shù)學(xué)教案11-14