高中數(shù)學(xué)教案15篇[精選]
作為一名人民教師,時(shí)常需要用到教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那要怎么寫(xiě)好教案呢?下面是小編為大家整理的高中數(shù)學(xué)教案,希望能夠幫助到大家。
高中數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
知識(shí)與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過(guò)程與方法:
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書(shū)寫(xiě)終邊相同角的集合;掌握區(qū)間角的集合的書(shū)寫(xiě)。
情感態(tài)度與價(jià)值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書(shū)寫(xiě)。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書(shū)寫(xiě)。
三、教學(xué)過(guò)程
。ㄒ唬⿲(dǎo)入新課
1、回顧角的定義
、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的.圖形。
②角的名稱:
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角。
、菥毩(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學(xué)教案2
教學(xué)目標(biāo):
(1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;
(2)了解全集、空集的意義。
(3)掌握有關(guān)子集、全集、補(bǔ)集的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;
(4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;
(5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;
(6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)重點(diǎn):
子集、補(bǔ)集的概念
教學(xué)難點(diǎn):
弄清元素與子集、屬于與包含之間的區(qū)別
教學(xué)用具:
幻燈機(jī)
教學(xué)過(guò)程設(shè)計(jì)
(一)導(dǎo)入新課
上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí)。
【提出問(wèn)題】(投影打出)
已知xx,xx,xx,問(wèn):
1、哪些集合表示方法是列舉法。
2、哪些集合表示方法是描述法。
3、將集M、集從集P用圖示法表示。
4、分別說(shuō)出各集合中的元素。
5、將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái)、將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái)。
6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。
【找學(xué)生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(筆練結(jié)合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題、
(二)新授知識(shí)
1、子集
(1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。
記作:xx讀作:A包含于B或B包含A
當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AxxB或BxxA、
性質(zhì):①xx(任何一個(gè)集合是它本身的子集)
、趚x(空集是任何集合的子集)
【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。
因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的空集也是B的子集,而這個(gè)集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。
(2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。
例:xx,可見(jiàn),集合x(chóng)x,是指A、B的所有元素完全相同。
(3)真子集:對(duì)于兩個(gè)集合A與B,如果xx,并且xx,我們就說(shuō)集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集!
集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B。
【提問(wèn)】
(1)xx寫(xiě)出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。
(2)xx判斷下列寫(xiě)法是否正確
①xxAxx②xxAxx③xx④AxxA
性質(zhì):
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;
(2)如果xx,xx,則xx。
例1xx寫(xiě)出集合x(chóng)x的所有子集,并指出其中哪些是它的真子集、
解:集合x(chóng)x的'所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集與真子集符號(hào)的方向。
(2)易混符號(hào)
、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}
、趝0}與xx:{0}是含有一個(gè)元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能寫(xiě)成xx={0},xx∈{0}
例2xx見(jiàn)教材P8(解略)
例3xx判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx與xx不能同時(shí)成立、
解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確、空集是任何非空集合的真子集;
(3)不正確、xx與xx表示同一集合;
(4)不正確、xx的所有子集是xx;
(5)正確
(6)不正確、當(dāng)xx時(shí),xx與xx能同時(shí)成立、
例4xx用適當(dāng)?shù)姆?hào)(xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)設(shè)xx,xx,xx,則AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、
【練習(xí)】教材P9
用適當(dāng)?shù)姆?hào)(xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提問(wèn):見(jiàn)教材P9例子
(二)xx全集與補(bǔ)集
1、補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作xx,即
、
A在S中的補(bǔ)集xx可用右圖中陰影部分表示、
性質(zhì):xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};
(2)若A={0},則xxNA=N;
(3)xxRQ是無(wú)理數(shù)集。
2、全集:
如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用xx表示。
注:xx是對(duì)于給定的全集xx而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同。
例如:若xx,當(dāng)xx時(shí),xx;當(dāng)xx時(shí),則xx。
例5xx設(shè)全集xx,xx,xx,判斷xx與xx之間的關(guān)系。
解:
練習(xí):見(jiàn)教材P10練習(xí)
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的補(bǔ)集xx;
(2)如果全集,xx,那么xx的補(bǔ)集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、五個(gè)概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))
2、五條性質(zhì)
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一個(gè)集合是它本身的子集。
(4)如果xx,xx,則xx、
(5)xxS(xxSA)=A
3、兩組易混符號(hào):(1)“xx”與“xx”:(2){0}與
(四)課后作業(yè):見(jiàn)教材P10習(xí)題1、2
高中數(shù)學(xué)教案3
教學(xué)目標(biāo):
。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
。2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學(xué)生抽象概括能力、分類(lèi)討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.
教學(xué)用具:計(jì)算機(jī)
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法
教學(xué)過(guò)程:
下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:
教學(xué)設(shè)計(jì)思路:
。ㄒ唬┮氲脑O(shè)計(jì)
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:
問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類(lèi),為什么?
答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:
問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類(lèi),為什么?
答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:
【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”
。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的.解的形式,因此把它看成形如 的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.
至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.
同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?
【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):
回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即
。1)當(dāng) 時(shí),方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線.
為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.
【動(dòng)畫(huà)演示】
演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.
至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.
。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
略
高中數(shù)學(xué)教案4
。ㄒ唬┙虒W(xué)具準(zhǔn)備
直尺,投影儀.
。ǘ┙虒W(xué)目標(biāo)
1.掌握,的定義域、值域、最值、單調(diào)區(qū)間.
2.會(huì)求含有、的三角式的定義域.
。ㄈ┙虒W(xué)過(guò)程
1.設(shè)置情境
研究函數(shù)就是要討論一些性質(zhì),,是函數(shù),我們當(dāng)然也要探討它的一些屬性.本節(jié)課,我們就來(lái)研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).
2.探索研究
師:同學(xué)們回想一下,研究一個(gè)函數(shù)常要研究它的哪些性質(zhì)?
生:定義域、值域,單調(diào)性、奇偶性、等等.
師:很好,今天我們就來(lái)探索,兩條最基本的性質(zhì)定義域、值域.(板書(shū)課題正、余弦函數(shù)的定義域、值域.)
師:請(qǐng)同學(xué)看投影,大家仔細(xì)觀察一下正弦、余弦曲線的圖像.
師:請(qǐng)同學(xué)思考以下幾個(gè)問(wèn)題:
(1)正弦、余弦函數(shù)的定義域是什么?
。2)正弦、余弦函數(shù)的值域是什么?
。3)他們最值情況如何?
。4)他們的正負(fù)值區(qū)間如何分?
。5)的解集如何?
師生一起歸納得出:
。1)正弦函數(shù)、余弦函數(shù)的定義域都是.
。2)正弦函數(shù)、余弦函數(shù)的值域都是即,,稱為正弦函數(shù)、余弦函數(shù)的有界性.
(3)取最大值、最小值情況:
正弦函數(shù),當(dāng)時(shí),()函數(shù)值取最大值1,當(dāng)時(shí),()函數(shù)值取最小值-1.
余弦函數(shù),當(dāng),()時(shí),函數(shù)值取最大值1,當(dāng),()時(shí),函數(shù)值取最小值-1.
。4)正負(fù)值區(qū)間:
()
。5)零點(diǎn):()
。ǎ
3.例題分析
【例1】求下列函數(shù)的定義域、值域:
(1);(2);(3).
解:(1),
。2)由()
又∵,∴
∴定義域?yàn)椋ǎ,值域(yàn)椋?/p>
。3)由(),又由
∴
∴定義域?yàn)椋ǎ,值域(yàn)椋?/p>
指出:求值域應(yīng)注意用到或有界性的條件.
【例2】求下列函數(shù)的最大值,并求出最大值時(shí)的集合:
。1),;(2),;
。3)(4).
解:(1)當(dāng),即()時(shí),取得最大值
∴函數(shù)的最大值為2,取最大值時(shí)的集合為.
(2)當(dāng)時(shí),即()時(shí),取得最大值.
∴函數(shù)的最大值為1,取最大值時(shí)的集合為.
。3)若,,此時(shí)函數(shù)為常數(shù)函數(shù).
若時(shí),∴時(shí),即()時(shí),函數(shù)取最大值,
∴時(shí)函數(shù)的最大值為,取最大值時(shí)的集合為.
(4)若,則當(dāng)時(shí),函數(shù)取得最大值.
若,則,此時(shí)函數(shù)為常數(shù)函數(shù).
若,當(dāng)時(shí),函數(shù)取得最大值.
∴當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為;當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為,當(dāng)時(shí),函數(shù)無(wú)最大值.
指出:對(duì)于含參數(shù)的.最大值或最小值問(wèn)題,要對(duì)或的系數(shù)進(jìn)行討論.
思考:此例若改為求最小值,結(jié)果如何?
【例3】要使下列各式有意義應(yīng)滿足什么條件?
。1);(2).
解:(1)由,
∴當(dāng)時(shí),式子有意義.
。2)由,即
∴當(dāng)時(shí),式子有意義.
4.演練反饋(投影)
。1)函數(shù),的簡(jiǎn)圖是()
。2)函數(shù)的最大值和最小值分別為()
A.2,-2 B.4,0 C.2,0 D.4,-4
(3)函數(shù)的最小值是()
A.B.-2 C.D.
。4)如果與同時(shí)有意義,則的取值范圍應(yīng)為()
A.B.C.D.或
。5)與都是增函數(shù)的區(qū)間是()
A.,B.,
C.,D.,
(6)函數(shù)的定義域________,值域________,時(shí)的集合為_(kāi)________.
參考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.總結(jié)提煉
。1),的定義域均為.
。2)、的值域都是
。3)有界性:
。4)最大值或最小值都存在,且取得極值的集合為無(wú)限集.
。5)正負(fù)敬意及零點(diǎn),從圖上一目了然.
。6)單調(diào)區(qū)間也可以從圖上看出.
(四)板書(shū)設(shè)計(jì)
1.定義域
2.值域
3.最值
4.正負(fù)區(qū)間
5.零點(diǎn)
例1
例2
例3
課堂練習(xí)
課后思考題:求函數(shù)的最大值和最小值及取最值時(shí)的集合
提示:
高中數(shù)學(xué)教案5
教學(xué)目標(biāo)
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;
(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類(lèi)比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
難點(diǎn)是解組合的應(yīng)用題.
教學(xué)過(guò)程設(shè)計(jì)
(-)導(dǎo)入新課
(教師活動(dòng))提出下列思考問(wèn)題,打出字幕.
[字幕]一條鐵路線上有6個(gè)火車(chē)站,(1)需準(zhǔn)備多少種不同的普通客車(chē)票?(2)有多少種不同票價(jià)的普通客車(chē)票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?
(學(xué)生活動(dòng))討論并回答.
答案提示:(1)排列;(2)組合.
[評(píng)述]問(wèn)題(1)是從6個(gè)火車(chē)站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車(chē)站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.
設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.
(二)新課講授
[提出問(wèn)題 創(chuàng)設(shè)情境]
(教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說(shuō)明一個(gè)組合是什么?
3.一個(gè)組合與一個(gè)排列有何區(qū)別?
(學(xué)生活動(dòng))閱讀回答.
(教師活動(dòng))對(duì)照課文,逐一評(píng)析.
設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).
[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車(chē)站中甲站→乙站和乙站→甲站是票價(jià)相同的車(chē)票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.
組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .
[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.
(學(xué)生活動(dòng))傾聽(tīng)、思索、記錄.
(教師活動(dòng))提出思考問(wèn)題.
[投影] 與 的關(guān)系如何?
(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;
第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車(chē)站有15種不同的票價(jià)的普通客車(chē)票.
設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.
【例題示范 探求方法】
(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.
[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的`所有組合.
例2 計(jì)算:(1) ;(2) .
(學(xué)生活動(dòng))板演、示范.
(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學(xué)生活動(dòng))思考分析.
解 首先,根據(jù)組合的定義,有
、
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習(xí) 學(xué)會(huì)應(yīng)用】
(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).
[課堂練習(xí)]課本P99練習(xí)第2,5,6題.
[補(bǔ)充練習(xí)]
[字幕]1.計(jì)算:
2.已知 ,求 .
(學(xué)生活動(dòng))板演、解答.
設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
(三)小結(jié)
(師生活動(dòng))共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計(jì)算的兩個(gè)公式.
(四)布置作業(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?
(五)課后點(diǎn)評(píng)
在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
高中數(shù)學(xué)教案6
1.1.1 任意角
教學(xué)目標(biāo)
(一) 知識(shí)與技能目標(biāo)
理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.
。ǘ 過(guò)程與能力目標(biāo)
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書(shū)寫(xiě)終邊相同角的集合;掌握區(qū)間角的集合的書(shū)寫(xiě).
(三) 情感與態(tài)度目標(biāo)
1. 提高學(xué)生的推理能力;
2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)
任意角概念的理解;區(qū)間角的集合的書(shū)寫(xiě). 教學(xué)難點(diǎn)
終邊相同角的集合的表示;區(qū)間角的集合的書(shū)寫(xiě).
教學(xué)過(guò)程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.
、诮堑拿Q:
、劢堑姆诸(lèi): A
正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角
、茏⒁猓
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角.
、菥毩(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.
例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z
、 α是任一角;
、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無(wú)限個(gè),它們相差
360°的整數(shù)倍;
、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
、640°;
、牵950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
⑶129°48’,第二象限角;
例4.寫(xiě)出終邊在y軸上的'角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫(xiě)出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫(xiě)出來(lái).
4.課堂小結(jié)
、俳堑亩x;
、诮堑姆诸(lèi):
正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角
、巯笙藿;
、芙K邊相同的角的表示法.
5.課后作業(yè):
、匍喿x教材P2-P5;
②教材P5練習(xí)第1-5題;
③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°<
各是第幾象限角?
。糼·180°+135°(k∈Z) .
。糿·360°+135°(n∈Z) ,
當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),
屬于第二象限角
。糿·360°+315°(n∈Z) ,
當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°<此時(shí),
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
。ㄒ唬
教學(xué)目標(biāo)
。ǘ 知識(shí)與技能目標(biāo)
理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
(三) 過(guò)程與能力目標(biāo)
能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問(wèn)題
。ㄋ模 情感與態(tài)度目標(biāo)
通過(guò)新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過(guò)對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美. 教學(xué)重點(diǎn)
弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學(xué)過(guò)程
一、復(fù)習(xí)角度制:
初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來(lái)度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來(lái)度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來(lái)不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來(lái)度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.
3.思考:
。1)一定大小的圓心角?所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
。2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):
①半圓所對(duì)的圓心角為
、谡麍A所對(duì)的圓心角為
③正角的弧度數(shù)是一個(gè)正數(shù).
、茇(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).
、萘憬堑幕《葦(shù)是零.
、藿铅恋幕《葦(shù)的絕對(duì)值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
、賹⒔嵌然癁榛《龋
、趯⒒《然癁榻嵌龋
5.常規(guī)寫(xiě)法:
① 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫(xiě)成多少π 的形式, 不必寫(xiě)成小數(shù).
② 弧度與角度不能混用.
弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計(jì)算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
、匍喿x教材P6 –P8;
、诮滩腜9練習(xí)第1、2、3、6題;
③教材P10面7、8題及B2、3題.
高中數(shù)學(xué)教案7
教學(xué)目標(biāo):
。1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。
。2)進(jìn)一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
。4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。
教學(xué)重點(diǎn)、難點(diǎn):
求曲線的方程。
教學(xué)用具:
計(jì)算機(jī)。
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法。
教學(xué)過(guò)程:
【引入】
1、提問(wèn):什么是曲線的方程和方程的曲線。
學(xué)生思考并回答。教師強(qiáng)調(diào)。
2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。
對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門(mén)科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是:
。1)根據(jù)已知條件,求出表示平面曲線的方程。
。2)通過(guò)方程,研究平面曲線的性質(zhì)。
事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。
【問(wèn)題】
如何根據(jù)已知條件,求出曲線的方程。
【實(shí)例分析】
例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。
首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。
解法一:易求線段的'中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決?墒,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?
。ㄍㄟ^(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。
證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。
設(shè)是線段的垂直平分線上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說(shuō)明點(diǎn)的坐標(biāo)是方程的解。
。2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線上。
綜合(1)、(2),①是所求直線的方程。
至此,證明完畢;仡櫳鲜鰞(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:
解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。
讓我們用這個(gè)方法試解如下問(wèn)題:
例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。
分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。
求解過(guò)程略。
【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫(xiě)出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:
。1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);
(2)寫(xiě)出適合條件的點(diǎn)的集合
;
。3)用坐標(biāo)表示條件,列出方程;
。4)化方程為最簡(jiǎn)形式;
。5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。
上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正。
下面再看一個(gè)問(wèn)題:
例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。
【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。
解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
①
將①式移項(xiàng)后再兩邊平方,得
化簡(jiǎn)得
由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。
根據(jù)條件,代入坐標(biāo)可得
化簡(jiǎn)得
、
由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
。1)解析幾何研究研究問(wèn)題的方法是什么?
。2)如何求曲線的方程?
。3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;
高中數(shù)學(xué)教案8
1.教學(xué)目標(biāo)
(1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;
2.會(huì)由圓的方程寫(xiě)出圓的半徑和圓心,能根據(jù)條件寫(xiě)出圓的方程.
(2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;
2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).
(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點(diǎn).難點(diǎn)
(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的.標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.
3.教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境(啟迪思維)
問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛?cè)脒@個(gè)隧道?
[引導(dǎo)] 畫(huà)圖建系
[學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛?cè)脒@個(gè)隧道。
(二)深入探究(獲得新知)
問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時(shí)又如何呢?
[學(xué)生活動(dòng)] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
i.直接應(yīng)用(內(nèi)化新知)
問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習(xí)1)
(1)圓心在原點(diǎn),半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .
2.根據(jù)圓的方程寫(xiě)出圓心和半徑
(1) ; (2) .
ii.靈活應(yīng)用(提升能力)
問(wèn)題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線方程.
[學(xué)生活動(dòng)]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線的方程是: .
iii.實(shí)際應(yīng)用(回歸自然)
問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]
(四)反饋訓(xùn)練(形成方法)
問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線方程.
4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線方程.
高中數(shù)學(xué)教案9
教學(xué)目標(biāo):
1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.
2.會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).
3.在嘗試、探索求反函數(shù)的過(guò)程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí).
4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問(wèn)題,培養(yǎng)抽象、概括的能力.
教學(xué)重點(diǎn):求反函數(shù)的方法.
教學(xué)難點(diǎn):反函數(shù)的概念.
教學(xué)過(guò)程:
教學(xué)活動(dòng)
設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課
1.復(fù)習(xí)提問(wèn)
、俸瘮(shù)的概念
、趛=f(x)中各變量的意義
2.同學(xué)們?cè)谖锢碚n學(xué)過(guò)勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù).在這種情況下,我們說(shuō)t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.
3.板書(shū)課題
由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.
二、實(shí)例分析,組織探究
1.問(wèn)題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱.是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算.同樣,與()也互為逆運(yùn)算.)
(2)由,已知y能否求x?
(3)是否是一個(gè)函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2.問(wèn)題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3.滲透反函數(shù)的概念.
(教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力.
通過(guò)這兩組問(wèn)題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問(wèn)題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).
三、師生互動(dòng),歸納定義
1.(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域?yàn)?C.我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) .如果對(duì)于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A中都有的值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫(xiě)成.
2.引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對(duì)應(yīng)法則為互逆運(yùn)算;
3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來(lái)說(shuō)不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號(hào)f;
7)交換變量x、y的原因.
3.兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)
4.函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1.(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x-1 (2)y=x 1
【例2】求函數(shù)的反函數(shù).
(教師板書(shū)例題過(guò)程后,由學(xué)生總結(jié)求反函數(shù)步驟.)
2.總結(jié)求函數(shù)反函數(shù)的'步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫(xiě)出反函數(shù)的定義域.
(簡(jiǎn)記為:反解、互換、寫(xiě)出反函數(shù)的定義域)【例3】(1)有沒(méi)有反函數(shù)?
(2)的反函數(shù)是________.
(3)(x<0)的反函數(shù)是__________.
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù).在剖析定義的過(guò)程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握.
通過(guò)動(dòng)畫(huà)演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解.
通過(guò)對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.
題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對(duì)定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.
五、鞏固強(qiáng)化,評(píng)價(jià)反饋
1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究.
(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)
進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度.具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性."問(wèn)題是數(shù)學(xué)的心臟"學(xué)生帶著問(wèn)題走進(jìn)課堂又帶著新的問(wèn)題走出課堂.
六、作業(yè)
習(xí)題2.4第1題,第2題
進(jìn)一步鞏固所學(xué)的知識(shí).
教學(xué)設(shè)計(jì)說(shuō)明
"問(wèn)題是數(shù)學(xué)的心臟".一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程.本節(jié)教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過(guò)若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.
反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號(hào).由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過(guò)不同層次的問(wèn)題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用.通過(guò)對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。
高中數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;
(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能。
二、教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解。
三、教學(xué)過(guò)程
1.新課導(dǎo)入
在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯。具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面。數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性。如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤。其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí)。
初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子。(板書(shū):命題。)
(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí)。)
(同學(xué)議論結(jié)果,答案是肯定的)
教師提問(wèn):什么是命題?
(學(xué)生進(jìn)行回憶、思考。)
概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題。
(教師肯定了同學(xué)的回答,并作板書(shū)。)
由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題。
(教師利用投影片,和學(xué)生討論以下問(wèn)題。)
例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題。
初中所學(xué)的`命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí)。
2.講授新課
大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?
(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題。師生一道歸納如下。)
(1)什么叫做命題?
可以判斷真假的語(yǔ)句叫做命題。
判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題。有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”。
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞。邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式。
對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能。
對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿足的意思。
對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對(duì)應(yīng)于集合 ,則命題非 就對(duì)應(yīng)著集合 在全集 中的補(bǔ)集 .
命題可分為簡(jiǎn)單命題和復(fù)合命題。
不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題。簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題。
由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題。
(4)命題的表示:用 , , , ,……來(lái)表示。
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi)。)
我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式。
給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題。
對(duì)于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .
在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”。例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題。
3.鞏固新課
例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題。如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題。
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯(cuò)角相等,兩直線平行;
(4)菱形的對(duì)角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析。教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充。)
例3 寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).
若給定語(yǔ)為
等于
大于
是
都是
至多有一個(gè)
至少有一個(gè)
至多有個(gè)
其否定語(yǔ)分別為
分析:“等于”的否定語(yǔ)是“不等于”;
“大于”的否定語(yǔ)是“小于或者等于”;
“是”的否定語(yǔ)是“不是”;
“都是”的否定語(yǔ)是“不都是”;
“至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;
“至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;
“至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”。
(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論。)
置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi)。)
4.課堂練習(xí):第26頁(yè)練習(xí)1
5.課外作業(yè):第29頁(yè)習(xí)題1.6
高中數(shù)學(xué)教案11
一、教學(xué)目標(biāo)
【知識(shí)與技能】
在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過(guò)程與方法】
通過(guò)對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力得到提高。
【情感態(tài)度與價(jià)值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的'一般方程。
【難點(diǎn)】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
三、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)教案12
教學(xué)目標(biāo)
1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.
。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;
(2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);
。3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.
2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類(lèi)比、歸納、猜想等思維品質(zhì).
3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
。1)知識(shí)結(jié)構(gòu)
是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類(lèi)比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.
(2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.
、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).
、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).
、蹖(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).
教學(xué)建議
。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的.概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.
(2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類(lèi),有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.
。3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.
(4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象.
。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.
教學(xué)設(shè)計(jì)示例
課題:的概念
教學(xué)目標(biāo)
1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.
2.使學(xué)生進(jìn)一步體會(huì)類(lèi)比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話法.
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數(shù)列,將它們分類(lèi),說(shuō)出分類(lèi)標(biāo)準(zhǔn).(幻燈片)
、伲2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1,,,…
、31,29,27,25,23,21,19,…
、1,-1,1,-1,1,-1,1,-1,…
、1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類(lèi)),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類(lèi)數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).
二、講解新課
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類(lèi)似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類(lèi)數(shù)列——.(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
。ò鍟(shū))
1.的定義(板書(shū))
根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫(xiě)出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).
請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類(lèi)數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):
2.對(duì)定義的認(rèn)識(shí)(板書(shū))
。1)的首項(xiàng)不為0;
。2)的每一項(xiàng)都不為0,即;
問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?
。3)公比不為0.
用數(shù)學(xué)式子表示的定義.
是①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為是?為什么不能?
式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.
3.的通項(xiàng)公式(板書(shū))
問(wèn)題:用和表示第項(xiàng).
、俨煌耆珰w納法
.
、诏B乘法
,…,,這個(gè)式子相乘得,所以.
(板書(shū))(1)的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.
。ò鍟(shū))(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來(lái)說(shuō),最后歸結(jié):
、俸瘮(shù)觀點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).
這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類(lèi)問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.
三、小結(jié)
1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;
2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類(lèi)比;
3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.
四、作業(yè)(略)
五、板書(shū)設(shè)計(jì)
1.等比數(shù)列的定義
2.對(duì)定義的認(rèn)識(shí)
3.等比數(shù)列的通項(xiàng)公式
。1)公式
。2)對(duì)公式的認(rèn)識(shí)
探究活動(dòng)
將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍,比如紙?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).
高中數(shù)學(xué)教案13
【課題名稱】
《等差數(shù)列》的導(dǎo)入
【授課年級(jí)】
高中二年級(jí)
【教學(xué)重點(diǎn)】
理解等差數(shù)列的概念,能夠運(yùn)用等差數(shù)列的定義判斷一個(gè)數(shù)列是否為等差數(shù)列。
【教學(xué)難點(diǎn)】
等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點(diǎn)的理解,
【教具準(zhǔn)備】多媒體課件、投影儀
【三維目標(biāo)】
㈠知識(shí)目標(biāo):
了解公差的概念,明確一個(gè)等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)等差數(shù)列是否是一個(gè)等差數(shù)列;
㈡能力目標(biāo):
通過(guò)尋找等差數(shù)列的共同特征,培養(yǎng)學(xué)生的觀察力以及歸納推理的能力;
㈢情感目標(biāo):
通過(guò)對(duì)等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力。
【教學(xué)過(guò)程】
導(dǎo)入新課
師:上兩節(jié)課我們已經(jīng)學(xué)習(xí)了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項(xiàng)法,遞推公式、圖像法。這些方法分別從不同的`角度反映了數(shù)列的特點(diǎn)。下面我們觀察以下的幾個(gè)數(shù)列的例子:
(1)我們經(jīng)常這樣數(shù)數(shù),從0開(kāi)始,每個(gè)5個(gè)數(shù)可以得到數(shù)列:0,5,10,15,20,()
(2)2000年,在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重被正式列為比賽項(xiàng)目,該項(xiàng)目工設(shè)置了7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問(wèn)第五個(gè)級(jí)別體重多少?
(3)為了保證優(yōu)質(zhì)魚(yú)類(lèi)有良好的生活環(huán)境,水庫(kù)管理員定期放水清庫(kù)以清除水庫(kù)中的雜魚(yú)。如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個(gè)數(shù)列:18,15.5,13,10.5,8,(),則第六個(gè)數(shù)應(yīng)為多少?
(4)10072,10144,10216,(),10360
請(qǐng)同學(xué)們回答以上的四個(gè)問(wèn)題
生:第一個(gè)數(shù)列的第6項(xiàng)為25,第二個(gè)數(shù)列的第5個(gè)數(shù)為68,第三個(gè)數(shù)列的第6個(gè)數(shù)為5.5,第四個(gè)數(shù)列的第4個(gè)數(shù)為10288。
師:我來(lái)問(wèn)一下,你是依據(jù)什么得到了這幾個(gè)數(shù)的呢?請(qǐng)以第二個(gè)數(shù)列為例說(shuō)明一下。
生:第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律我就得到了這個(gè)數(shù)列的第5個(gè)數(shù)為68.
師:說(shuō)的很好!同學(xué)們?cè)僮屑?xì)地觀察一下以上的四個(gè)數(shù)列,看看以上的四個(gè)數(shù)列是否有什么共同特征?請(qǐng)注意,是共同特征。
生1:相鄰的兩項(xiàng)的差都等于同一個(gè)常數(shù)。
師:很好!那作差是否有順序?是否可以顛倒?
生2:作差的順序是后項(xiàng)減去前項(xiàng),不能顛倒!
師:正如生1的總結(jié),這四個(gè)數(shù)列有共同的特征:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。
推進(jìn)新課
等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學(xué)們應(yīng)該注意公差d一定是由后項(xiàng)減前項(xiàng)。
師:有哪個(gè)同學(xué)知道定義中的關(guān)鍵字是什么?
生2:“從第二項(xiàng)起”和“同一個(gè)常數(shù)”
高中數(shù)學(xué)教案14
一、活動(dòng)主題的提出
根據(jù)新課改課程標(biāo)準(zhǔn)及高中數(shù)學(xué)教學(xué)要求,為切實(shí)實(shí)施素質(zhì)教育,改革教學(xué)方式與方法,變教教材為用教材,有機(jī)地開(kāi)展校本課程,培養(yǎng)學(xué)生的綜合實(shí)踐能力和創(chuàng)新能力,培養(yǎng)學(xué)生的探索精神和用數(shù)學(xué)的意識(shí),以教材中的閱讀與思考為素教材,推進(jìn)高中數(shù)學(xué)研究性學(xué)習(xí)的進(jìn)程,對(duì)該問(wèn)題進(jìn)行研究,旨在為深化課堂教學(xué)內(nèi)容,促進(jìn)性自主研究和學(xué)習(xí),從而探討高中數(shù)學(xué)研究性學(xué)習(xí)的實(shí)施辦法。
二、活動(dòng)的具體目標(biāo)
1、知識(shí)目標(biāo):通過(guò)集合中元素的個(gè)數(shù)問(wèn)題的研究,探求有限集合中元素個(gè)數(shù)間的關(guān)系,比較幾個(gè)集合中元素個(gè)數(shù)的多少的方法。
2、能力目標(biāo):能多方面、多角度、多層面來(lái)探究問(wèn)題,運(yùn)用知識(shí)來(lái)解決問(wèn)題,培養(yǎng)學(xué)生的發(fā)散思維和創(chuàng)新思維能力。
3、情感目標(biāo):學(xué)該課題的研究,激發(fā)學(xué)生的學(xué)習(xí)熱情和學(xué)習(xí)興趣,享受探索成功的樂(lè)趣,培養(yǎng)科學(xué)態(tài)度與科學(xué)精神。
三、活動(dòng)的實(shí)施過(guò)程、方式
1、出示活動(dòng)內(nèi)容與思考的問(wèn)題(5分鐘)
。1)、學(xué)校小賣(mài)部進(jìn)了兩次貨,第一次進(jìn)的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進(jìn)的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進(jìn)了幾種貨?回答兩次一共進(jìn)了10(6+4)種,對(duì)嗎?應(yīng)如何解答?有哪些方法?因此可以得出什么結(jié)論(集合中元素個(gè)數(shù)間的關(guān)系)?
。2)、學(xué)校先舉辦了一次田徑運(yùn)動(dòng)會(huì),某班有8名同學(xué)參賽,又舉辦了一次球類(lèi)運(yùn)動(dòng)會(huì),這個(gè)班有12名同學(xué)參賽,兩次運(yùn)動(dòng)會(huì)都參賽的有3人。兩次運(yùn)動(dòng)會(huì)中,這個(gè)班共有多少名同學(xué)參賽?應(yīng)如何解答?由此解出以下結(jié)論(集合中元素個(gè)數(shù)間的關(guān)系)?又如:某班共30人,其中15人喜愛(ài)籃球運(yùn)動(dòng),10人喜愛(ài)乒乓球運(yùn)動(dòng),8人對(duì)這兩項(xiàng)運(yùn)動(dòng)都不喜愛(ài),則喜愛(ài)籃球運(yùn)動(dòng)但不喜愛(ài)乒乓球運(yùn)動(dòng)的人是多少?應(yīng)如何解答?
。3)涉及三個(gè)及三個(gè)以上,集合的并、交問(wèn)題,能用類(lèi)似的結(jié)論嗎?應(yīng)怎樣表達(dá)?如:學(xué)校開(kāi)運(yùn)動(dòng)會(huì),設(shè)。若參加一百米的同學(xué)有5人,參加二百米跑的同學(xué)有6人,參加四百米跑的同學(xué)有7人,參加一百、二百同學(xué)有2人,參加一百、四百的同學(xué)有3人,參加二百、四百的同學(xué)有5人,三項(xiàng)都參加的'人有1人,求有多少人參賽?
。4)設(shè)計(jì)比較集合與集合B=中元素的個(gè)數(shù)的多少的方法。
2、活動(dòng)分工及時(shí)間安排(25分鐘)
全班以大組為單位(共四個(gè)大組)來(lái)研究以上4個(gè)問(wèn)題。第一大組研究(1)問(wèn)題,第二大組研究(2)個(gè)問(wèn)題,第三大組研究(3)個(gè)問(wèn)題,第四大組研究(4)個(gè)問(wèn)題。要求每組由學(xué)生自行確定一位負(fù)責(zé)人,并由此同學(xué)組織具體活動(dòng),明確該同學(xué)是下步活動(dòng)交流中心發(fā)言人。有余力的組可協(xié)助思考其它組的問(wèn)題。教師下到各組視察,了解情況,并作必要的指導(dǎo)。
3、活動(dòng)交流(15分鐘)
請(qǐng)每一小組中心發(fā)言人回答各自分配的問(wèn)題,全班其它同學(xué)補(bǔ)充,教師引導(dǎo)學(xué)生概括,得出結(jié)論:
列舉法
問(wèn)題(1)涉及的集合元素個(gè)數(shù)較少而且具體,可用列舉法寫(xiě)出,很快可解決此問(wèn)題,并由特殊到一般的思維方式概括得出:
圖解法
當(dāng)集合元素個(gè)數(shù)較少而不具體時(shí),據(jù)題意畫(huà)出集合的韋恩圖,從而解決實(shí)際問(wèn)題如問(wèn)題(2),并歸納得出:這一結(jié)論。
數(shù)形結(jié)合法
利用集合間的關(guān)系,結(jié)合示意圖,據(jù)未知可設(shè)適當(dāng)?shù)奈粗獢?shù),建立方程求解,如問(wèn)題(2)中的第二個(gè)問(wèn)題。設(shè)喜愛(ài)籃球運(yùn)動(dòng)但不喜愛(ài)乒乓球運(yùn)動(dòng)的人數(shù)為x,則兩項(xiàng)都喜愛(ài)的有(15-x)人,喜愛(ài)乒乓球而不喜愛(ài)籃球的有[10-(15-x)]人,據(jù)題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛(ài)籃球運(yùn)動(dòng)但不喜愛(ài)乒乓球運(yùn)動(dòng)的有12人。
歸納、猜想法
通過(guò)對(duì)問(wèn)題(3)的求解,并結(jié)合問(wèn)題(1)、(2)的求解,歸納、猜想出:。
概念派生法
通過(guò)問(wèn)題(4)的研究求解,大部分學(xué)生較易得出A,因此,由真子集的概念得出集合B的元素的個(gè)數(shù)少于集合A的元素的個(gè)數(shù)。這個(gè)結(jié)論是由概念的內(nèi)涵派生出來(lái)的。
“對(duì)應(yīng)”法
經(jīng)研究討論,同學(xué)中有“集合A的元素個(gè)數(shù)等于集合B的元素個(gè)數(shù)”的結(jié)論。少數(shù)同學(xué)運(yùn)用“對(duì)應(yīng)”思想:,顯然有此結(jié)論。這是一個(gè)多好的想法。
四、活動(dòng)評(píng)價(jià)
充分運(yùn)用高中數(shù)學(xué)子教材資源“閱讀與思考”,廣泛開(kāi)展第二課堂活動(dòng),能很好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,能很好地開(kāi)發(fā)學(xué)生的創(chuàng)造潛能,有助于學(xué)生探究能力和創(chuàng)新能力的提高。通過(guò)本課題的研究,至少有以下成功之處:第一、深化了課堂知識(shí),進(jìn)一步鞏固和拓展了所學(xué)知識(shí);第二、培養(yǎng)了學(xué)生探究能力,很好地改變了學(xué)生的學(xué)習(xí)方式、方法;第三、增強(qiáng)了學(xué)生運(yùn)用知識(shí)解決問(wèn)題的意識(shí):該課題以解決問(wèn)題為背景,通過(guò)分工與合作和恰當(dāng)?shù)匾龑?dǎo),學(xué)生用知識(shí)的意識(shí)明顯增強(qiáng),運(yùn)用知識(shí)解決問(wèn)題的能力明顯提高;第四、培養(yǎng)了學(xué)生的思維品質(zhì)。通過(guò)問(wèn)題(4)的研究,我們得出了不一樣的結(jié)論,但都有道理,學(xué)生向引發(fā)爭(zhēng)議,學(xué)生的批判性思維得到較好的發(fā)展。
五、注意事項(xiàng)
1、教師課題準(zhǔn)備要充分。要認(rèn)真鉆研材料;查閱相關(guān)資料或研究成果;作好周密的活動(dòng)計(jì)劃。切忌無(wú)準(zhǔn)備或準(zhǔn)備不充分就上課。
2、避免“活動(dòng)研究課”上課學(xué)科化,要充分地讓學(xué)生自主的活動(dòng),不人為地牽制學(xué)生。
3、積極引導(dǎo)學(xué)生搞好“交流——合作”環(huán)節(jié)的活動(dòng),充分聽(tīng)取學(xué)生的意見(jiàn),讓學(xué)生自己總結(jié)作法和研究成果,切忌教師包辦,強(qiáng)加于人。
4、堅(jiān)持引導(dǎo)學(xué)生寫(xiě)好活動(dòng)總結(jié)和體會(huì),歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。
高中數(shù)學(xué)教案15
1. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己。有較強(qiáng)的集體榮譽(yù)感,學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績(jī)穩(wěn)定。生活艱苦樸素,待人熱情大方,是個(gè)基礎(chǔ)扎實(shí),品德兼優(yōu)的好學(xué)生。
2. 該生能?chē)?yán)格遵守學(xué)校的規(guī)章制度。尊敬師長(zhǎng),團(tuán)結(jié)同學(xué)。熱愛(ài)集體,積極配合其他同學(xué)搞好班務(wù)工作,勞動(dòng)積極肯干。學(xué)習(xí)刻苦認(rèn)真,勤學(xué)好問(wèn),學(xué)習(xí)成績(jī)穩(wěn)定,學(xué)風(fēng)和工作作風(fēng)都較為踏實(shí),堅(jiān)持出滿勤,并能積極參加社會(huì)實(shí)踐和文體活動(dòng),勞動(dòng)積極。是一位發(fā)展全面的好學(xué)生。
3. 你是同學(xué)擁護(hù)、老師信任的班委,乖巧懂事、伶俐開(kāi)朗、自信大方、樂(lè)觀合群,是同學(xué)們學(xué)習(xí)的榜樣。你愛(ài)護(hù)集體榮譽(yù),有很強(qiáng)的工作能力,總是及時(shí)協(xié)助老師完成班務(wù)工作,是老師的得力幫手。你心性坦蕩,個(gè)性鮮明,能大膽說(shuō)出自己的想法,難能可貴。而你在運(yùn)動(dòng)場(chǎng)上的爆發(fā)力更讓老師同學(xué)們驚嘆!潛力深厚,希望在高中時(shí)期能逐漸發(fā)掘出來(lái)!
4. 你是個(gè)做事小心翼翼,感情細(xì)膩豐富的女孩,每次看你認(rèn)真的樣子老師都很感動(dòng)。你也是幸運(yùn)的,周邊有很多人都在關(guān)愛(ài)著你,所以,對(duì)他們,尤其是父母,記得不要太莽撞,不要太任性,要學(xué)著體諒,學(xué)著換位思考,學(xué)著懂事。另外,今后要多運(yùn)動(dòng)、多鍛煉,有健康才能成就美好未來(lái)!
5. 你堅(jiān)強(qiáng)勇敢、樂(lè)觀大方的性格讓老師非常欣賞。學(xué)習(xí)上始終保持著上進(jìn)好學(xué)的決心和韌性,生活中始終能做到豁達(dá)開(kāi)朗,還有著良好的審美和繪畫(huà)的專(zhuān)長(zhǎng),令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學(xué)習(xí)生活。
6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時(shí)機(jī)去努力開(kāi)創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機(jī)會(huì),求得上進(jìn)。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅(jiān)定目標(biāo)致力于學(xué)習(xí),定能大限度地發(fā)揮你的聰明才智!
7. 該生遵紀(jì)守法,積極參加社會(huì)實(shí)踐和文體活動(dòng),集體觀念強(qiáng),勞動(dòng)積極肯干。是一位誠(chéng)實(shí)守信,思想上進(jìn),尊敬老師,團(tuán)結(jié)同學(xué),熱心助人,積極參加班集體活動(dòng),有體育特長(zhǎng),學(xué)習(xí)認(rèn)真,具有較好綜合素質(zhì)的優(yōu)秀學(xué)生。
8. 你聰穎活潑,渾身洋溢青春氣息。你愛(ài)好廣泛,善鉆精思,具備一定能力,潛質(zhì)無(wú)限。但是在有些時(shí)候,在面臨一些問(wèn)題的時(shí)候,你總表現(xiàn)得太過(guò)緊張,其實(shí),征服畏懼、建立自信的最快最確實(shí)的方法,就是大膽地去做你認(rèn)為害怕的事,直到你獲得成功的經(jīng)驗(yàn)。繼續(xù)努力!
9. 你是對(duì)3班這個(gè)集體的成長(zhǎng)貢獻(xiàn)很大的孩子,是老師的得力幫手。你干練沉穩(wěn),堅(jiān)強(qiáng)隱忍,能從大局出發(fā)考慮問(wèn)題,在很多時(shí)候能獨(dú)當(dāng)一面。你獨(dú)立能力強(qiáng),能夠吃苦,但在進(jìn)入高中的學(xué)習(xí)上卻顯得有些吃力。其實(shí)你還有很深的潛力尚未挖掘,找對(duì)方法,好好加油,世上沒(méi)有絕望的處境,只有對(duì)處境絕望的人,請(qǐng)樂(lè)觀一點(diǎn),踏實(shí)地走好接下來(lái)的每一步!
10. 你是個(gè)能獨(dú)立、有主見(jiàn)的女孩,有自己的想法,有一定的決斷力。但是獨(dú)立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點(diǎn)上做的還是不錯(cuò)的。晟君,老師希望你能一如既往地關(guān)注于學(xué)習(xí)而不懈怠,能堅(jiān)持懷揣著平和感恩的心態(tài)簡(jiǎn)單快樂(lè)地生活。
11. 你給我的第一印象是有些沉默,其實(shí)和朋友在一起時(shí)還是很有自己想法的對(duì)吧?你看,你布置的新年教室多么出彩!請(qǐng)繼續(xù)秀出真實(shí)而精彩的`你!這半個(gè)學(xué)期的學(xué)習(xí)有點(diǎn)力不從心,請(qǐng)保持謹(jǐn)慎和細(xì)心,保持好的學(xué)習(xí)習(xí)慣,及時(shí)彌補(bǔ)所缺漏的環(huán)節(jié),大步向前進(jìn)!
12. 該生認(rèn)真遵守學(xué)校的規(guī)章制度,積極參加社會(huì)實(shí)踐和文體活動(dòng),集體觀念強(qiáng),勞動(dòng)積極肯干。尊敬師長(zhǎng),團(tuán)結(jié)同學(xué)。學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績(jī)穩(wěn)定上升。是有理想有抱負(fù),基礎(chǔ)扎實(shí),心理素質(zhì)過(guò)硬、全面發(fā)展的優(yōu)秀學(xué)生。
13. 你是一個(gè)真誠(chéng)待人、溫柔可愛(ài)的女生。也許是因?yàn)槟阌行┎痪o不慢的性格,所以在學(xué)習(xí)上有時(shí)候行動(dòng)力不夠堅(jiān)決,造成了學(xué)習(xí)成績(jī)的不穩(wěn)定。請(qǐng)多利用假期時(shí)間好好補(bǔ)缺補(bǔ)漏,向上的姿態(tài)才是最重要的!
14. 老師同學(xué)們都在說(shuō)你是個(gè)很有責(zé)任心和上進(jìn)心的孩子,在班級(jí)需要的時(shí)候,你承擔(dān)了勞動(dòng)委員的重任,經(jīng)常最后一個(gè)離開(kāi),就為了班級(jí)能有個(gè)整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時(shí)間,在工作的空隙抓緊時(shí)間做作業(yè)。希望下學(xué)期你的學(xué)習(xí)成績(jī)也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!
15. 其實(shí)你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時(shí)常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開(kāi)心扉,多與旁人交流你快樂(lè)的體驗(yàn)和想法,不要吝嗇展示自己!還有,成功需要成本,時(shí)間也是一種成本,對(duì)時(shí)間的珍惜就是對(duì)成本的節(jié)約。請(qǐng)務(wù)必抓緊每寸光陰,努力學(xué)習(xí)!
16. 你知道嗎?在世界上那些最容易的事情中,拖延時(shí)間是最不費(fèi)力的。而學(xué)習(xí)卻是艱辛的勞動(dòng)過(guò)程。表面安靜的你其實(shí)心里有著自己的想法和煩憂。于是在不經(jīng)意間,精力被不自覺(jué)地轉(zhuǎn)移到一些瑣事上,卻總無(wú)法完全集中心智于學(xué)業(yè)。也許你也已經(jīng)意識(shí)到,也有了些許進(jìn)步,那么請(qǐng)千萬(wàn)記住要持之以恒,要付出比別人更多倍的努力!
17. 你是班級(jí)的數(shù)學(xué)科代表,老師很高興選擇你擔(dān)任這個(gè)職務(wù),不僅能促進(jìn)自己的進(jìn)步,而且也展現(xiàn)了你負(fù)責(zé)工作的一面。但是學(xué)習(xí)是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽(tīng)講是否及時(shí)而有效,包括功課的完成是否嚴(yán)謹(jǐn)而認(rèn)真。下學(xué)期,愿看到一個(gè)更加全神貫注更加專(zhuān)心致志的你!
18. 我一直難忘在運(yùn)動(dòng)會(huì)上你擔(dān)任前導(dǎo)牌的樣子,為班級(jí)添光增彩了不少!你有著繪畫(huà)的特長(zhǎng),是個(gè)善良、真誠(chéng)的女孩,有著細(xì)膩豐富的內(nèi)心,也許只需一點(diǎn)鼓勵(lì),你便會(huì)勇敢走下去,希望能在平時(shí)多聽(tīng)見(jiàn)你爽朗的笑聲!
19. 可愛(ài)、熱情、謹(jǐn)小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認(rèn)為你是能夠認(rèn)真仔細(xì)地作好每一件事情、成就每一個(gè)細(xì)節(jié)的,因此,希望你能珍惜時(shí)間,提高效率,在學(xué)習(xí)上狠狠加油!
20. 其實(shí),任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個(gè)方面,我很高興地看到你做的很好,你學(xué)習(xí)自覺(jué),成績(jī)便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責(zé)任意識(shí)、大局意識(shí)和管理能力,希望以后在這方面能看到你更加出色的表現(xiàn)!
21. 你是個(gè)可愛(ài)善良,懂事乖巧的女孩。作為語(yǔ)文科代表,兢兢業(yè)業(yè),一絲不茍。你對(duì)人也是特別真誠(chéng)熱情,偶爾透露出的憂郁是旁人不易察覺(jué)的。但是你知道,成長(zhǎng)就是破蛹成蝶的過(guò)程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長(zhǎng)帶來(lái)的所有痛苦和快樂(lè)!
22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進(jìn)度,迎頭趕上,期待你獲得更大的進(jìn)步!
23. 你曾經(jīng)和我說(shuō)過(guò)你的理想,但你對(duì)理想的憧憬和你所付出的努力程度卻總是難成正比。若現(xiàn)在你覺(jué)得有障礙擋在前行之路上,那就說(shuō)明你還沒(méi)有把目標(biāo)看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時(shí)無(wú)法適從。你現(xiàn)在欠缺的就是對(duì)自己發(fā)狠奮進(jìn)的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實(shí)踐去爭(zhēng)取,而不是光靠幾句好聽(tīng)的決心話!
24. 你乖巧大方,組織能力一流,但在學(xué)習(xí)上總顯得有些力不從心?祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達(dá),只要踏實(shí)努力,不懂就問(wèn),采用適合自己的學(xué)習(xí)方法,就會(huì)看到進(jìn)步。也許剛開(kāi)始的時(shí)候進(jìn)步很小,小到你看不見(jiàn),但是不要灰心,萬(wàn)事開(kāi)頭難!將事前的憂慮,換為事前的思考和計(jì)劃,徹底放松,加強(qiáng)鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!
25. 該生能遵守校紀(jì)班規(guī),尊敬師長(zhǎng),能與同學(xué)和睦相處,勤學(xué)好問(wèn),有較強(qiáng)的獨(dú)立鉆研能力,分析問(wèn)題比較深入、全面,在某些問(wèn)題上有獨(dú)特的見(jiàn)解,學(xué)習(xí)成績(jī)?cè)诎嗌弦恢蹦鼙3智懊,?lè)于助人,能幫助學(xué)習(xí)有困難的同學(xué)。
26. 不論在體育場(chǎng)還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個(gè)字。這確是一個(gè)高中生應(yīng)該有的精神面貌。你做事認(rèn)真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進(jìn)!也希望能夠多和老師同學(xué)交流,多提些對(duì)班集體建設(shè)的好建議!
27. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己,積極參加社會(huì)實(shí)踐和文體活動(dòng)。尊敬師長(zhǎng),團(tuán)結(jié)同學(xué)。集體觀念強(qiáng),勞動(dòng)積極肯干。積極參加各種集體活動(dòng)和社會(huì)實(shí)踐活動(dòng)。學(xué)習(xí)目的明確,刻苦認(rèn)真,成績(jī)穩(wěn)定,是一個(gè)有理想、有抱負(fù),基礎(chǔ)扎實(shí),心理素質(zhì)過(guò)硬,全面發(fā)展的優(yōu)秀學(xué)生。
28. 我很高興看到你是個(gè)有上進(jìn)心,有責(zé)任感,能夠讓家人、師長(zhǎng)寬慰的孩子。有努力就有回報(bào),你下半學(xué)期的表現(xiàn)不就證明了這一點(diǎn)嗎?進(jìn)步是隨著時(shí)間節(jié)節(jié)上升的,不要太過(guò)急躁,要知道,若你不給自己設(shè)限,則人生中就沒(méi)有限制你發(fā)揮的藩籬。新學(xué)期要重整旗鼓,再接再勵(lì)!
29. ××× 獨(dú)立性較強(qiáng),對(duì)自己的能力也有準(zhǔn)確的定位。建議今后學(xué)習(xí)上要養(yǎng)成勤思愛(ài)問(wèn)的習(xí)慣,不能做井底之蛙,滿足于現(xiàn)狀,要充分利用他人的智慧,最后達(dá)到“好風(fēng)憑借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見(jiàn)讀書(shū)的態(tài)度很端正;而你每一次考試的成績(jī)雖然不拔尖,卻是在穩(wěn)步前進(jìn),可見(jiàn)讀書(shū)的效率還不錯(cuò)。請(qǐng)繼續(xù)保持這種虛心求學(xué)、穩(wěn)步前進(jìn)的態(tài)勢(shì),相信一年半以后的高考,你必將嶄露頭角,脫穎而出。
【高中數(shù)學(xué)教案】相關(guān)文章:
高中必修數(shù)學(xué)教案01-07
高中數(shù)學(xué)教案10-26
高中必修4數(shù)學(xué)教案03-13
高中數(shù)學(xué)教案09-28
高中數(shù)學(xué)教案[通用]06-22
高中數(shù)學(xué)教案【推薦】05-26
【集合】高中數(shù)學(xué)教案05-22
高中高二數(shù)學(xué)教案11-14