亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

高中數(shù)學教案

時間:2024-05-29 11:36:54 高中數(shù)學教案 我要投稿

高中數(shù)學教案集合【15篇】

  作為一位杰出的老師,通常需要用到教案來輔助教學,教案有利于教學水平的提高,有助于教研活動的開展。我們應該怎么寫教案呢?以下是小編幫大家整理的高中數(shù)學教案,歡迎閱讀與收藏。

高中數(shù)學教案集合【15篇】

高中數(shù)學教案1

  教學目標1.進一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;

  2.在運用建模和數(shù)形結合等數(shù)學思想方法分析、解決問題的過程中;提高解決問題的能力;

  3.進一步提高學生的合作意識和探究意識。

  教學重點:線性規(guī)劃的概念及其解法

  教學難點

  代數(shù)問題幾何化的過程

  教學方法:啟發(fā)探究式

  教學手段運用多媒體技術

  教學過程:1.實際問題引入。

  問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?

  2.探究和討論下列問題。

  (1)實際問題轉化為一個怎樣的數(shù)學問題?

  (2)滿足不等式組①的條件的點構成的區(qū)域如何表示?

  (3)關于x、y的一個表達式z=70x+50y的幾何意義是什么?

  (4)z的幾何意義是什么?

  (5)z的最大值如何確定?

  讓學生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行駛路程可以表示成關于x、y的一個表達式:z=70x+50y 由數(shù)形結合可知:經(jīng)過點B(6,6)的直線所對應的z最大.

  則zmax=6×70+6×50=720

  結論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.

  解題反思:

  問題解決過程中體現(xiàn)了那些重要的數(shù)學思想?

  3.線性規(guī)劃的有關概念。

  什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標函數(shù)、線性目標函數(shù)、可行解、可行域和最優(yōu)解等概念.

  4.進一步探究線性規(guī)劃問題的解。

  問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?

  要求:請你寫出約束條件、目標函數(shù),作出可行域,求出最優(yōu)解。

  問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?

  5.小結。

  (1)數(shù)學知識;(2)數(shù)學思想。

  6.作業(yè)。

  (1)閱讀教材:P.60-63;

  (2)課后練習:教材P.65-2,3;

  (3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標函數(shù),作出可行域,并求出最優(yōu)解。

  《一個數(shù)列的研究》教學設計

  教學目標:

  1.進一步理解和掌握數(shù)列的有關概念和性質(zhì);

  2.在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

  3.進一步提高問題探究意識、知識應用意識和同伴合作意識。

  教學重點:

  問題的提出與解決

  教學難點:

  如何進行問題的探究

  教學方法:

  啟發(fā)探究式

  教學過程:

  問題:已知{an}是首項為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進行研究,你能得到一些什么樣的結論?

  研究方向提示:

  1.數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;

  2.研究所給數(shù)列的項之間的關系;

  3.研究所給數(shù)列的子數(shù)列;

  4.研究所給數(shù)列能構造的新數(shù)列;

  5.數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;

  6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復數(shù)、圖形、實際意義等)。

  針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

  課堂小結:

  1.研究一個數(shù)列可以從哪些方面提出問題并進行研究?

  2.你最喜歡哪位同學的研究?為什么?

  課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結論會有什么變化?

  2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進行類比研究?

  開展研究性學習,培養(yǎng)問題解決能力

  一、對“研究性學習”和“問題解決”的認識 研究性學習是一種與接受性學習相對應的學習方式,泛指學生主動探究問題的學習。研究性學習也可以說是一種學習活動:學生在教師指導下,在自己的學習生活和社會生活中選擇課題,以類似科學研究的方式去主動地獲取知識、應用知識、解決問題。

  “問題解決”(problem solving)是美國數(shù)學教育界在二十世紀八十年代的主要口號,即認為應當以“問題解決”作為學校數(shù)學教育的中心。

  問題解決能力是一種重要的數(shù)學能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數(shù)學教學活動中開展研究性學習是培養(yǎng)問題解決能力的主要途徑。

  二、“問題解決”課堂教學模式的建構與實踐 以研究性學習活動為載體,以培養(yǎng)問題解決能力為核心的'課堂教學模式(以下簡稱為“問題解決”課堂教學模式)試圖通過問題情境創(chuàng)設,激發(fā)學生的求知欲,以獨立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。

 。ㄒ唬╆P于“問題解決”課堂教學模式

  通過實施“問題解決”課堂教學模式,希望能夠達到以下的功能目標:學習發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結協(xié)作精神,增進師生、同伴之間的情感交流,形成自覺運用數(shù)學基礎知識、基本技能和數(shù)學思想方法分析問題、解決問題的能力和意識。

 。ǘ⿺(shù)學學科中的問題解決能力的培養(yǎng)目標

  數(shù)學問題解決能力培養(yǎng)的目標可以有不同層次的要求:會審題,會建模,會轉化,會歸類,會反思,會編題。

 。ㄈ皢栴}解決”課堂教學模式的教學流程

 。ㄋ模皢栴}解決”課堂教學評價標準

  1. 教學目標的確定;

  2. 教學方法的選擇;

  3. 問題的選擇;

  4. 師生主體意識的體現(xiàn);

  5.教學策略的運用。

 。ㄎ澹┝私鈱W生的數(shù)學問題解決能力的途徑

  (六)開展研究性學習活動對教師的能力要求

高中數(shù)學教案2

  第一章:空間幾何體

  1.1.1柱、錐、臺、球的結構特征

  一、教學目標

  1.知識與技能

 。1)通過實物操作,增強學生的直觀感知。

  (2)能根據(jù)幾何結構特征對空間物體進行分類。

  (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

 。4)會表示有關于幾何體以及柱、錐、臺的分類。

  2.過程與方法

  (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

 。2)讓學生觀察、討論、歸納、概括所學的知識。

  3.情感態(tài)度與價值觀

  (1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

  (2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點、難點

  重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

  難點:柱、錐、臺、球的結構特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

 。2)實物模型、投影儀

  四、教學思路

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

  2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。

 。ǘ、研探新知

  1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

  2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

  3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。

  5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

  6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

  7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。

  8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

  9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

  1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3.課本P8,習題1.1A組第1題。

  4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

  5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習:課本P7練習1、2(1)(2)

  課本P8習題1.1第2、3、4題

  五、歸納整理

  由學生整理學習了哪些內(nèi)容

  六、布置作業(yè)

  課本P8練習題1.1B組第1題

  課外練習課本P8習題1.1B組第2題

  1.2.1空間幾何體的三視圖(1課時)

  一、教學目標

  1.知識與技能

 。1)掌握畫三視圖的基本技能

 。2)豐富學生的空間想象力

  2.過程與方法

  主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3.情感態(tài)度與價值觀

 。1)提高學生空間想象力

  (2)體會三視圖的作用

  二、教學重點、難點

  重點:畫出簡單組合體的三視圖

  難點:識別三視圖所表示的空間幾何體

  三、學法與教學用具

  1.學法:觀察、動手實踐、討論、類比

  2.教學用具:實物模型、三角板

  四、教學思路

 。ㄒ唬﹦(chuàng)設情景,揭開課題

  “橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

  在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

 。ǘ⿲嵺`動手作圖

  1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

  2.教師引導學生用類比方法畫出簡單組合體的三視圖

 。1)畫出球放在長方體上的三視圖

  (2)畫出礦泉水瓶(實物放在桌面上)的三視圖

  學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

  作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

  3.三視圖與幾何體之間的相互轉化。

 。1)投影出示圖片(課本P10,圖1.2-3)

  請同學們思考圖中的三視圖表示的幾何體是什么?

 。2)你能畫出圓臺的三視圖嗎?

 。3)三視圖對于認識空間幾何體有何作用?你有何體會?

  教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。

  4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

 。ㄈ╈柟叹毩

  課本P12練習1、2P18習題1.2A組1

 。ㄋ模w納整理

  請學生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┱n外練習

  1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

  1.2.2空間幾何體的直觀圖(1課時)

  一、教學目標

  1.知識與技能

 。1)掌握斜二測畫法畫水平設置的.平面圖形的直觀圖。

 。2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

  2.過程與方法

  學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

  3.情感態(tài)度與價值觀

 。1)提高空間想象力與直觀感受。

 。2)體會對比在學習中的作用。

 。3)感受幾何作圖在生產(chǎn)活動中的應用。

  二、教學重點、難點

  重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

  三、學法與教學用具

  1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

  2.教學用具:三角板、圓規(guī)

  四、教學思路

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱

  把實物圓柱放在講臺上讓學生畫。

  2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。

  (二)研探新知

  1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。

  畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。

  練習反饋

  根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

  2.例2,用斜二測畫法畫水平放置的圓的直觀圖

  教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。

  教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。

  3.探求空間幾何體的直觀圖的畫法

  (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

  教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

  (2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

  5.鞏固練習,課本P16練習1(1),2,3,4

  三、歸納整理

  學生回顧斜二測畫法的關鍵與步驟

  四、作業(yè)

  1.書畫作業(yè),課本P17練習第5題

  2.課外思考課本P16,探究(1)(2)

高中數(shù)學教案3

  教學目標

  1使學生理解本章的知識結構,并通過本章的知識結構掌握本章的全部知識;

  2對線段、射線、直線、角的概念及它們之間的關系有進一步的認識;

  3掌握本章的全部定理和公理;

  4理解本章的數(shù)學思想方法;

  5了解本章的題目類型。

  教學重點和難點

  重點是理解本章的知識結構,掌握本章的全部定和公理;難點是理解本章的數(shù)學思想方法。

  教學設計過程

  一、本章的知識結構

  二、本章中的概念

  1直線、射線、線段的概念。

  2線段的中點定義。

  3角的兩個定義。

  4直角、平角、周角、銳角、鈍角的概念。

  5互余與互補的角。

  三、本章中的公理和定理

  1直線的公理;線段的公理。

  2補角和余角的性質(zhì)定理。

  四、本章中的主要習題類型

  1對直線、射線、線段的概念的理解。

  例1下列說法中正確的是( )。

  A延長射線OP B延長直線CD

  C延長線段CD D反向延長直線CD

  解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。

  例2如圖1-57中的線段共有多少條?

  解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。

  2線段的和、差、倍、分。

  例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。

  A.B. C. D.

  解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。

  解:因為AB=4,M是AB的中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5

  3角的概念性質(zhì)及角平分線。

  例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。

  解:因為OD是∠AOB的平分線,所以∠BOD= ∠AOB;又因為OE是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  則∠EOD=90°。

  例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?

  解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  則∠AOC=60°,(同角的余角相等)

  ∠AOC與∠COB的度數(shù)的比是2∶1。

  4互余與互補角的性質(zhì)。

  例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。

  解:因為COD為直線,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB為直線,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB為直線,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的度數(shù)。

  解:設第一個角為x°,則另一個角為3x°,

  依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一個角為10°,另一個角為30°。

  5度分秒的換算及和、差、倍、分的計算。

  例9 (1)將4589°化成度、分、秒的形式。

  (2)將80°34′45″化成度。

  (3)計算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)約為8058°。

  (3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進位,做除法后得9°44′11″)

  五、本章中所學到的數(shù)學思想

  1運動變化的觀點:幾何圖形不是孤立和靜止的,也應看作不斷發(fā)展和變化的,如線段向一個方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點旋轉就形成角;角的終邊不斷旋轉就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。

  2數(shù)形結合的思想:在幾何的知識中經(jīng)常遇到計算問題,對形的研究離不開數(shù)。正如數(shù)學家華羅庚所說:“數(shù)缺形時少直觀,形缺數(shù)時難如微”。本章的知識中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學習不能與代數(shù)的學習截然分開,在形的問題難以解決時,發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時,畫出與它相關的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結合,就會養(yǎng)成良好的思維習慣。

  3聯(lián)系實際,從實際事物中抽象出數(shù)學模型。數(shù)學的產(chǎn)生來源于生產(chǎn)和生活實踐,因此學習數(shù)學不能脫離實際生活,尤其是幾乎何的學習更離不開實際生活。一方面要讓學生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導學生將所學的知識去解決某些簡單的實際問題,這才是理論聯(lián)系實際的觀點。

  六、本章的疑點和誤點分析

  概念在應用中的混淆。

  例10判斷正誤:

  (1)在∠AOB的邊OA的延長線上取一點D。

  (2)大于90°的角是鈍角。

  (3)任何一個角都可以有余角。

  (4)∠A是銳角,則∠A的所有余角都相等。

  (5)兩個銳角的`和一定小于平角。

  (6)直線MN是平角。

  (7)互補的兩個角的和一定等于平角。

  (8)如果一個角的補角是銳角,那么這個角就沒有余角。

  (9)鈍角一定大于它的補角。

  (10)經(jīng)過三點一定可以畫一條直線。

  解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

  (2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

  (3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。

  (4)對.∠A的所有余角都是90°-∠A。

  (5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

  (6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標出表示角的頂點的點,就可以了。

  (7)對。符合互補的角的定義。

  (8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。

  (9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。

  (10)錯。這個題應該分情況討論:如果這三點在同一條直線上,這個結論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。

  板書設計

  回顧與反思

  (一)知識結構(四)主要習題類型(五)本章的數(shù)學思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑誤點分析

  (三)本章的公理和定理·

  例9

高中數(shù)學教案4

  教學準備

  教學目標

  熟悉兩角和與差的正、余公式的`推導過程,提高邏輯推理能力。

  掌握兩角和與差的正、余弦公式,能用公式解決相關問題。

  教學重難點

  熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

  教學過程

  復習

  兩角差的余弦公式

  用- B代替B看看有什么結果?

高中數(shù)學教案5

  1. 你能遵守學校的規(guī)章制度,按時上學,按時完成作業(yè),書寫比較端正,課堂上你也坐得比較端正。如果在學習上能夠更加主動一些,尋找適合自己的學習

  2. 你尊敬老師、團結同學、熱愛勞動、關心集體,所以大家都喜歡你。能嚴格遵守學校的各項規(guī)章制度。學習不夠刻苦,有畏難情緒。學習方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學習成績比上學期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

  3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學友愛相處,待人有禮,能虛心接受老師的教導。大多數(shù)的時候你都能遵守紀律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學習成績不容樂觀,需努力提高學習成績。希望能從根本上認識到自己的不足,在課堂上能認真聽講,開動腦筋,遇到問題敢于請教。

  4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學們及時安靜,對學習態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的`人生!

  5. 學習態(tài)度端正,效率高,合理分配時間,學習生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學相處關系融洽。能嚴格遵守學校的各項規(guī)章制度。上課能專心聽講,認真做好筆記,課后能按時完成作業(yè)。記憶力好,自學能力較強。希望你能更主動地學習,多思,多問,多練,大膽向老師和同學請教,注意采用科學的學習方法,提高學習效率,一定能取得滿意的成績!

  6. 作為本班的班長,你對待班級工作能夠認真負責,積極配合老師和班委工作,集體榮譽感很強,人際關系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領全班不僅在班級管理上有進步,而且能在學習上也能成為全班的領頭雁,在下學期能取得更大的進步!

  7. 身為班委的你,對工作認真負責,以身作則,性格和善,與同學關系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學習上,你認真聽課,及時完成各科作業(yè),但是我總覺得你的學習還不夠主動,沒有形成自己的一套方法,若從被動的學習中解脫出來,應該穩(wěn)定在班級前五名啊!加油!

  8. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠專心聽講,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!

  9. 你為人熱情大方,能和同學友好相處。你為人正直誠懇,尊敬老師,關心班集體,待人有禮,能認真聽從老師的教導,自覺遵守學校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學習刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認真做好筆記。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

  10. 記得和你說過,你是個太聰明的孩子,你反應敏捷,活潑靈動。但是做學問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學期重新抖擻精神早日進入狀態(tài),不辜負關愛你的人對你的殷殷期盼。

高中數(shù)學教案6

  [核心必知]

  1、預習教材,問題導入

  根據(jù)以下提綱,預習教材P6~P9,回答下列問題、

  (1)常見的程序框有哪些?

  提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

 。2)算法的基本邏輯結構有哪些?

  提示:順序結構、條件結構和循環(huán)結構、

  2、歸納總結,核心必記

 。1)程序框圖

  程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、

  在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、

 。2)常見的程序框、流程線及各自表示的功能

  圖形符號名稱功能

  終端框(起止框)表示一個算法的起始和結束

  輸入、輸出框表示一個算法輸入和輸出的信息

  處理框(執(zhí)行框)賦值、計算

  判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”

  流程線連接程序框

  ○連接點連接程序框圖的兩部分

 。3)算法的基本邏輯結構

  ①算法的三種基本邏輯結構

  算法的三種基本邏輯結構為順序結構、條件結構和循環(huán)結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的

 、陧樞蚪Y構

  順序結構是由若干個依次執(zhí)行的步驟組成的這是任何一個算法都離不開的基本結構,用程序框圖表示為:

  [問題思考]

 。1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?

  提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束、

 。2)順序結構是任何算法都離不開的基本結構嗎?

  提示:根據(jù)算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構、

  [課前反思]

  通過以上預習,必須掌握的幾個知識點:

  (1)程序框圖的概念:

 。2)常見的程序框、流程線及各自表示的功能:

 。3)算法的三種基本邏輯結構:

 。4)順序結構的'概念及其程序框圖的表示:

  問題背景:計算1×2+3×4+5×6+…+99×100。

  [思考1]能否設計一個算法,計算這個式子的值。

  提示:能。

  [思考2]能否采用更簡潔的方式表述上述算法過程。

  提示:能,利用程序框圖。

  [思考3]畫程序框圖時應遵循怎樣的規(guī)則?

  名師指津:

 。1)使用標準的框圖符號。

 。2)框圖一般按從上到下、從左到右的方向畫。

 。3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。

  (4)在圖形符號內(nèi)描述的語言要非常簡練清楚。

  (5)流程線不要忘記畫箭頭,因為它是反映流程執(zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。

高中數(shù)學教案7

  一、教學內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。

  二、學生學習情況分析

  我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率。

  四、教學目標

  1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

  2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

  3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣。

  五、教學重點與難點:

  教學重點

  1、對圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學難點:

  巧用圓錐曲線定義解題

  六、教學過程設計

  【設計思路】

  (一)開門見山,提出問題

  一上課,我就直截了當?shù)亟o出例題1:

  (1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

  (A)橢圓(B)雙曲線(C)線段(D)不存在

  (2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

  (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設計意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

  為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

  【學情預設】

  估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

  這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當?shù)淖冃危D化為學生們熟知的兩個距離公式。

  在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

  (二)理解定義、解決問題

  例2:

  (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點P(-2,2),求|PA|

  【設計意圖】

  運用圓錐曲線定義中的數(shù)量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

  【學情預設】

  根據(jù)以往的經(jīng)驗,多數(shù)學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的'關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

  (三)自主探究、深化認識

  如果時間允許,練習題將為學生們提供一次數(shù)學猜想、試驗的機會。

  練習:

  設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

  引申:若將點A移到圓C外,點M的軌跡會是什么?

  【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

  可借助“多媒體課件”,引導學生對自己的結論進行驗證。

  【知識鏈接】

  (一)圓錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應用舉例

  1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

  2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

  4、例題:

  (1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

  (2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

  (3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

  七、教學反思

  1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優(yōu)勢。

  2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

  總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質(zhì)教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學思維能力。

高中數(shù)學教案8

  1.課題

  填寫課題名稱(高中代數(shù)類課題)

  2.教學目標

  (1)知識與技能:

  通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;

  (2)過程與方法:

  通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價值觀:

  通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應用到實際生活中,增加學生數(shù)學學習的樂趣。

  3.教學重難點

  (1)教學重點:本節(jié)課的知識重點

  (2)教學難點:易錯點、難以理解的知識點

  4.教學方法(一般從中選擇3個就可以了)

  (1)討論法

  (2)情景教學法

  (3)問答法

  (4)發(fā)現(xiàn)法

  (5)講授法

  5.教學過程

  (1)導入

  簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)

  (2)新授課程(一般分為三個小步驟)

 、俸唵沃v解本節(jié)課基礎知識點(例:奇函數(shù)的定義)。

  ②歸納總結該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設置易錯點,進行強調(diào)。可以設計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設置定義域不關于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。

 、弁卣寡由欤瑢⑺鶎W知識拓展延伸到實際題目中,去解決實際生活中的問題。

 。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細。)

  (3)課堂小結

  教師提問,學生回答本節(jié)課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。

  6.教學板書

  2.高中數(shù)學教案格式

  一.課題(說明本課名稱)

  二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)

  三.課型(說明屬新授課,還是復習課)

  四.課時(說明屬第幾課時)

  五.教學重點(說明本課所必須解決的關鍵性問題)

  六.教學難點(說明本課的學習時易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點)

  七.教學方法要根據(jù)學生實際,注重引導自學,注重啟發(fā)思維

  八.教學過程(或稱課堂結構,說明教學進行的內(nèi)容、方法步驟)

  九.作業(yè)處理(說明如何布置書面或口頭作業(yè))

  十.板書設計(說明上課時準備寫在黑板上的內(nèi)容)

  十一.教具(或稱教具準備,說明輔助教學手段使用的工具)

  十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法)

  3.高中數(shù)學教案范文

  【教學目標】

  1.知識與技能

  (1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:

  (2)賬務等差數(shù)列的通項公式及其推導過程:

  (3)會應用等差數(shù)列通項公式解決簡單問題。

  2.過程與方法

  在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價值觀

  通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。

  【教學重點】

  ①等差數(shù)列的概念;

 、诘炔顢(shù)列的通項公式

  【教學難點】

 、倮斫獾炔顢(shù)列“等差”的.特點及通項公式的含義;

 、诘炔顢(shù)列的通項公式的推導過程.

  【學情分析】

  我所教學的學生是我校高一(7)班的學生(平行班學生),經(jīng)過一年的高中數(shù)學學習,大部分學生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

  【設計思路】

  1、教法

  ①啟發(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.

  ②分組討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性.

 、壑v練結合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點.

  2、學法

  引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

  【教學過程】

  一、創(chuàng)設情境,引入新課

  1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

  3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?

  教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

  學生:

  ①0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  (設置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.

  二、觀察歸納,形成定義

  ①0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點?

  思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?

  教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.

  (設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)

  三、舉一反三,鞏固定義

  1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學生思考回答.教師訂正并強調(diào)求公差應注意的問題.

  注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.

  (設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).

  2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設計意圖:強化等差數(shù)列的證明定義法)

  四、利用定義,導出通項

  1、已知等差數(shù)列:8,5,2,…,求第200項?

  2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

  教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.

  (設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)

  五、應用通項,解決問題

  1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?

  2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差數(shù)列3,7,11,…的第4項和第10項

  教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

  學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

  (設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)

  六、反饋練習:教材13頁練習1

  七、歸納總結:

  1、一個定義:

  等差數(shù)列的定義及定義表達式

  2、一個公式:

  等差數(shù)列的通項公式

  3、二個應用:

  定義和通項公式的應用

  教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充

  (設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

  【設計反思】

  本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

高中數(shù)學教案9

  教學目標:

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義。

  (3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數(shù)學結合的數(shù)學思想;

  (6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力。

  教學重點:

  子集、補集的概念

  教學難點:

  弄清元素與子集、屬于與包含之間的區(qū)別

  教學用具:

  幻燈機

  教學過程設計

  (一)導入新課

  上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。

  【提出問題】(投影打出)

  已知xx,xx,xx,問:

  1、哪些集合表示方法是列舉法。

  2、哪些集合表示方法是描述法。

  3、將集M、集從集P用圖示法表示。

  4、分別說出各集合中的元素。

  5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。

  6、集M中元素與集N有何關系、集M中元素與集P有何關系。

  【找學生回答】

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(筆練結合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

  5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)

  6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經(jīng)常出現(xiàn),本節(jié)將研究有關兩個集合間關系的問題、

  (二)新授知識

  1、子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作:xx讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、

  性質(zhì):①xx(任何一個集合是它本身的子集)

 、趚x(空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的`集合。

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例:xx,可見,集合xx,是指A、B的所有元素完全相同。

  (3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集!

  集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B。

  【提問】

  (1)xx寫出數(shù)集N,Z,Q,R的包含關系,并用文氏圖表示。

  (2)xx判斷下列寫法是否正確

  ①xxAxx②xxAxx③xx④AxxA

  性質(zhì):

  (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

  (2)如果xx,xx,則xx。

  例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、

  解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

 、佟皒x”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}

  ②{0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。

  如:xx{0}。不能寫成xx={0},xx∈{0}

  例2xx見教材P8(解略)

  例3xx判斷下列說法是否正確,如果不正確,請加以改正、

  (1)xx表示空集;

  (2)空集是任何集合的真子集;

  (3)xx不是xx;

  (4)xx的所有子集是xx;

  (5)如果xx且xx,那么B必是A的真子集;

  (6)xx與xx不能同時成立、

  解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確、空集是任何非空集合的真子集;

  (3)不正確、xx與xx表示同一集合;

  (4)不正確、xx的所有子集是xx;

  (5)正確

  (6)不正確、當xx時,xx與xx能同時成立、

  例4xx用適當?shù)姆?xx,xx)填空:

  (1)xx;xx;xx;

  (2)xx;xx;

  (3)xx;

  (4)設xx,xx,xx,則AxxBxxC、

  解:(1)0xx0xx;

  (2)xx=xx,xx;

  (3)xx,xx∴xx;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、

  【練習】教材P9

  用適當?shù)姆?xx,xx)填空:

  (1)xx;xx(5)xx;

  (2)xx;xx(6)xx;

  (3)xx;xx(7)xx;

  (4)xx;xx(8)xx、

  解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

  提問:見教材P9例子

  (二)xx全集與補集

  1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即

  、

  A在S中的補集xx可用右圖中陰影部分表示、

  性質(zhì):xxS(xxSA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

  (2)若A={0},則xxNA=N;

  (3)xxRQ是無理數(shù)集。

  2、全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。

  注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。

  例如:若xx,當xx時,xx;當xx時,則xx。

  例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。

  解:

  練習:見教材P10練習

  1、填空:

  xx,xx,那么xx,xx。

  解:xx,

  2、填空:

  (1)如果全集xx,那么N的補集xx;

  (2)如果全集,xx,那么xx的補集xx(xx)=xx、

  解:(1)xx;(2)xx。

  (三)小結:本節(jié)課學習了以下內(nèi)容:

  1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

  2、五條性質(zhì)

  (1)空集是任何集合的子集。ΦxxA

  (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

  (3)任何一個集合是它本身的子集。

  (4)如果xx,xx,則xx、

  (5)xxS(xxSA)=A

  3、兩組易混符號:(1)“xx”與“xx”:(2){0}與

  (四)課后作業(yè):見教材P10習題1、2

高中數(shù)學教案10

  教學目的:掌握圓的標準方程,并能解決與之有關的問題

  教學重點:圓的標準方程及有關運用

  教學難點:標準方程的`靈活運用

  教學過程:

  一、導入新課,探究標準方程

  二、掌握知識,鞏固練習

  練習:⒈說出下列圓的方程

  ⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

  ⑴(x-2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)

  練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

  四、小結練習P771,2,3,4

  五、作業(yè)P811,2,3,4

高中數(shù)學教案11

  一、自我介紹

  我姓x,是你們的數(shù)學老師,因為是數(shù)學老師所以在自我介紹的時候喜歡給出自己的數(shù)字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。

  二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學,一起來思考為什么要學習數(shù)學及如何學好數(shù)學這兩個問題。

  (一)為什么要學習數(shù)學

  相信高一的第一節(jié)課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數(shù)學老師我表達上不如文科老師迂回婉轉和風趣幽默,我們更喜歡用數(shù)字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數(shù)學系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數(shù)學是有用的,數(shù)學有助于提高能力。

  數(shù)學家華羅庚在《人民日報》精彩描述了數(shù)學在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。

  問題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請出十大行星行列的?

  海王星的發(fā)現(xiàn)是在數(shù)學計算過程中發(fā)現(xiàn)的,天文望遠鏡的觀測只是驗證了人們的推論。

  1812年,法國人布瓦德在計算天王星的運動軌道時,發(fā)現(xiàn)理論計算值同觀測資料發(fā)生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發(fā)現(xiàn)天王星的脫軌與一個未知的引力的存在相關。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發(fā)信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為"海王星"。

  1930年美國天文學家湯博發(fā)現(xiàn)冥王星,當時錯估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過近30年的進一步觀測和計算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經(jīng)過多年的爭論,國際天文學聯(lián)合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國際天文學聯(lián)合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數(shù)量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭議。

  馬克思說:"一種科學只有在成功運用數(shù)學時,才算達到了真正完善的地步。"正因為數(shù)學是日常生活和進一步學習必不可少的基礎和工具,一切科學到了最后都歸結為數(shù)學問題。

  其實在我們的周圍有很多事情都是可以用數(shù)學可以來解決的,無非很多人都沒有用數(shù)學的眼光來看待。

  問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結論呢?(讓同學發(fā)言)

  我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。

  證明:(反證法)假如上帝是萬能的

  那么他能夠制作出一塊無論什么力量都搬不動的石頭

  根據(jù)假設,既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭

  這與"無論什么力量都搬不動的石頭"相矛盾

  所以假設不成立

  所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?

  當然,我們學習的數(shù)學只是數(shù)學學科體系中很基礎,很小的一部分,F(xiàn)在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數(shù)學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:"讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數(shù)學使人聰明…",也有人形象地稱數(shù)學是思維的體操。下面我們通過具體的例子來體驗一下某些數(shù)學思想方法和思維方式。

  故事一:據(jù)說國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項發(fā)明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國所有的谷子抬來也遠遠不夠。

  人們通常憑借自己掌握的數(shù)學知識耍些小聰明,使問題妙不可言。

  數(shù)學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。

  數(shù)學思想:退到最簡單、最特殊的地方。

  故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認為他會怎么做呢?

  渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現(xiàn)了數(shù)學學習中經(jīng)常用到的發(fā)散式思維。在數(shù)學學習中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯(lián)系思維方式,表現(xiàn)為對解題方法的模仿和繼承;而發(fā)散式思維即對問題開拓、創(chuàng)新,表現(xiàn)為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。

  學數(shù)學有利于培養(yǎng)人的思維品質(zhì):結構意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數(shù)學在培養(yǎng)學生的這些思維品質(zhì)方面和其他學科存在著交集,但數(shù)學在其中的'地位是無法被代替的?傊,學習數(shù)學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創(chuàng)造……

  (二)如何學好數(shù)學

  高中數(shù)學的內(nèi)容多,抽象性、理論性強,高中很注重自學能力的培養(yǎng)的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養(yǎng),誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發(fā)展的前途。同時要注意以下幾點:

  第一:對數(shù)學學科特點有清楚的認識

  主編寄語里是這樣描述數(shù)學的特征的:數(shù)學是自然的。數(shù)學的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復數(shù),都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應用,讓數(shù)學顯得合情合理,渾然天成。數(shù)學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學規(guī)則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當然"的話,那就學不下去了。

  第二:要改變一個觀念。

  有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內(nèi)容,那么你打的基礎就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。

  第三:學數(shù)學要摸索自己的學習方法

  學習、掌握并能靈活應用數(shù)學的途徑有千萬條,每個人都可以有與眾不同的數(shù)學學習方法。做習題、用數(shù)學解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。此外,還要發(fā)揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯(lián)系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。

  第四:養(yǎng)成良好的學習習慣(與一中學生相比較)

 、逭n前預習。怎樣預習呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經(jīng)有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。

 、嫔险n認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。

 、珀P于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當天的作業(yè)多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養(yǎng)成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流

 、铚蕚湟槐竟P記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數(shù)學成績提高。

  好的開始是成功的一半,新的學期開始了,請大家調(diào)整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。

高中數(shù)學教案12

  一. 學習目標

  (1)通過實例體會分布的意義與作用; (2)在表示樣本數(shù)據(jù)的過程中,學會列頻率分布表,畫頻率分布直方圖,頻率折線圖; (3)通過實例體會頻率分布直方圖,頻率折線圖,莖葉圖的各自特點,從而恰當?shù)倪x擇上述方法分析樣本的分布,準確的作出總體估計。

  二. 學習重點

  三.學習難點

  能通過樣本的頻率分布估計總體的分布。

  四.學習過程

  (一)復習引入

  (1 )統(tǒng)計的核心問題是什么?

  (2 )隨機抽樣的幾種常用方法有哪些?

  (3)通過抽樣方法收集數(shù)據(jù)的目的是什么?

  (二)自學提綱

  1.我們學習了哪些統(tǒng)計圖?不同的統(tǒng)計圖適合描述什么樣的數(shù)據(jù)?

  2.如何列頻率分布表?

  3.如何畫頻率分布直方圖?基本步驟是什么?

  4.頻率分布直方圖的縱坐標是什么?

  5.頻率分布直方圖中小長方形的面積表示什么?

  6.頻率分布直方圖中小長方形的面積之和是多少?

  (三)課前自測

  1.從一堆蘋果中任取了20只,并得到了它們的質(zhì)量(單位:g)數(shù)據(jù)分布表如下:

  分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數(shù) 1 2 3 10 1 則這堆蘋果中,質(zhì)量不小于120g的蘋果數(shù)約占蘋果總數(shù)的xxx%. 2.關于頻率分布直方圖,下列說法正確的是( ) a.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻率 b.直方圖的高表示取某數(shù)的頻率 c.直方圖的高表示該組上的樣本中出現(xiàn)的頻率與組距的比值 d.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻數(shù)與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學 典例:城市缺水問題(自學教材65頁~68頁)

  問題1.你認為為了較為合理地確定出這個標準,需要做哪些工作? 2.如何分析數(shù)據(jù)?根據(jù)這些數(shù)據(jù)你能得出用水量其他信息嗎? 知識整理: 1.頻率分布的概念: 頻率分布: 頻數(shù): 頻率:

  2.畫頻率分布直方圖的步驟: (1).求極差: (2).決定組距與組數(shù) 組距: 組數(shù): (3).將數(shù)據(jù)分組 (4).列頻率分布表 (5).畫頻率分布直方圖 問題: .

  1.月平均用水量在2.5—3之間的頻率是多少?

  2.月均用水量最多的在哪個區(qū)間?

  3.月均用水量小于4.5 的頻率是多少?

  4.小長方形的面積=?

  5.小長方形的面積總和=?

  6.如果希望85%以上居民不超出標準,如何制定標準?

  7.直方圖有那些優(yōu)點和缺點?

  例題講解: 例1有一個容量為50的樣本數(shù)據(jù)的分組的頻數(shù)如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出樣本的頻率分布表; (2)畫出頻率分布直方圖; (3)根據(jù)頻率分布直方圖估計,數(shù)據(jù)落在[15.5, 24.5)的百分比是多少? (4)數(shù)據(jù)小于21.5的百分比是多少?

  3.頻率分布折線圖、總體密度曲線 問題1:如何得到頻率分布折線圖 ? 頻率分布折線圖的概念:

  問題2:在城市缺水問題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會有什么變化?假如增至10000呢?

  總體密度曲線的.概念:

  注:用樣本分布直方圖去估計相應的總體分布時,一般樣本容量越大,頻率分布直方圖就會無限接近總體密度曲線,就越精確地反映了總體的分布規(guī)律,即越精確地反映了總體在各個范圍內(nèi)1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計總體的分布。

  4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:

  小結:.總體的分布分兩種情況:當總體中的個體取值很少時,用莖葉圖估計總體的分布;當總體中的個體取值較多時,將樣本數(shù)據(jù)恰當分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。

  課堂小結:

  當堂檢測:

  1. 一個社會調(diào)查機構就某地居民的月收入調(diào)查了10000人, 并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖)。 為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系, 要從這10000人中再用分層抽樣方法抽出100人作進一步 調(diào)查,則 [2500,3000)(元)月收入段應抽取 人。

  2、為了解某校高三學生的視力情況,隨機抽查了該校200名高三學生的視力情況,得到頻率分布直方圖(如圖), 由于不慎將部分數(shù)據(jù)丟失,但知道前四組的頻數(shù)成等比數(shù) 列,后6組的頻數(shù)成等差數(shù)列,設最多一組學生數(shù)為a,視 力在4.6到5.0之間的頻率為b,則

  a+b= . 3.在抽查產(chǎn)品的尺寸過程中,將其尺寸分成若干組,[a,b)是其中的一組,抽查出的個體在該組上的頻率為m,該組上的直方圖的高為h,則ba?=xx. 4.為了了解中學生的身高情況,對育才中學同齡的50名男學生的身高進行了測量,結果如下:(單位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181

  (1)列出樣本的頻率分布表。

  (2)畫出頻率分布直方圖。

  (3)畫頻率分布折線圖;

高中數(shù)學教案13

  教學目標

  (1)了解算法的含義,體會算法思想。

  (2)會用自然語言和數(shù)學語言描述簡單具體問題的算法;

  (3)學習有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。

  教學重難點

  重點:算法的含義、解二元一次方程組的算法設計。

  難點:把自然語言轉化為算法語言。

  情境導入

  電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:

  第一步:觀察、等待目標出現(xiàn)(用望遠鏡或瞄準鏡);

  第二步:瞄準目標;

  第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;

  第四步:根據(jù)第三步的結果修正彈著點;

  第五步:開槍;

  第六步:迅速轉移(或隱蔽)

  以上這種完成狙擊任務的方法、步驟在數(shù)學上我們叫算法。

  課堂探究

  預習提升

  1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

  2、描述方式

  自然語言、數(shù)學語言、形式語言(算法語言)、框圖。

  3、算法的要求

  (1)寫出的算法,必須能解決一類問題,且能重復使用;

  (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結果。

  4、算法的特征

  (1)有限性:一個算法應包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結束。

  (2)確定性:算法的計算規(guī)則及相應的計算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結果。

  (4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。

  (5)不唯一性:解決同一問題的算法可以是不唯一的

  課堂典例講練

  命題方向1對算法意義的理解

  例1、下列敘述中,

  ①植樹需要運苗、挖坑、栽苗、澆水這些步驟;

 、诎错樞蜻M行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

  ③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;

 、3x>x+1;

  ⑤求所有能被3整除的正數(shù),即3,6,9,12。

  能稱為算法的個數(shù)為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

  【答案】B

  [規(guī)律總結]

  1、正確理解算法的概念及其特點是解決問題的關鍵、

  2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的'和有效的,而且能在有限步驟之內(nèi)解決這一問題、

  【變式訓練】下列對算法的理解不正確的是________

  ①一個算法應包含有限的步驟,而不能是無限的

 、谒惴ǹ梢岳斫鉃橛苫具\算及規(guī)定的運算順序構成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤斢行У貓(zhí)行,并得到確定的結果

 、芤粋問題只能設計出一個算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的故②正確;

  由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;

  由對于同一個問題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的算法

  例2、給出求解方程組的一個算法。

  [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

  [規(guī)范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y(tǒng)=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規(guī)律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學知識的靈活運用。

  2、設計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設計算法步驟。

  【變式訓練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問題的算法設計

  例3、設計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、

  [思路分析]比較a,b比較m與c―→最小數(shù)

  [規(guī)范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規(guī)律總結]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。

  【變式訓練】在下列數(shù)字序列中,寫出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個數(shù)m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執(zhí)行;

  4、繼續(xù)將序列中的其他數(shù)賦給m,重復第2步,直到搜索到89。

  命題方向4非數(shù)值性問題的算法

  例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。

  (1)設計安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

高中數(shù)學教案14

  教學目標:

  1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關系。

  2。會求一些簡單函數(shù)的反函數(shù)。

  3。在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結合以及由特殊到一般等數(shù)學思想方法的認識。

  4。進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

  教學重點:

  求反函數(shù)的方法。

  教學難點:

  反函數(shù)的概念。

  教學過程:

  教學活動

  設計意圖一、創(chuàng)設情境,引入新課

  1。復習提問

 、俸瘮(shù)的概念

 、趛=f(x)中各變量的意義

  2。同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容。

  3。板書課題

  由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

  二、實例分析,組織探究

  1。問題組一:

 。ㄓ猛队敖o出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關系?這兩組函數(shù)有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

 。2)由,已知y能否求x?

 。3)是否是一個函數(shù)?它與有何關系?

 。4)與有何聯(lián)系?

  2。問題組二:

 。1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 。2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 。3)函數(shù) ()的定義域與函數(shù)()的值域有什么關系?

  3。滲透反函數(shù)的概念。

 。ń處燑c明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力。

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎。

  三、師生互動,歸納定義

  1。(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設它的值域為 C。我們根據(jù)這個函數(shù)中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: 。考慮到"用 x表示自變量, y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成。

  2。引導分析:

  1)反函數(shù)也是函數(shù);

  2)對應法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因。

  3。兩次轉換x、y的對應關系

 。ㄔ瘮(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4。函數(shù)與其反函數(shù)的關系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應用解題,總結步驟

  1。(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

 。1)y=3x—1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù)。

 。ń處煱鍟}過程后,由學生總結求反函數(shù)步驟。)

  2?偨Y求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫出反函數(shù)的定義域。

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

 。2)的反函數(shù)是________。

 。3)(x<0)的反函數(shù)是__________。

  在上述探究的基礎上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的`把握。

  通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解。

  通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養(yǎng)學生分析、思考的習慣,以及歸納總結的能力。

  題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學生思考練習,師生共同分析糾正。

  五、鞏固強化,評價反饋

  1。已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

 。1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

  五、反思小結,再度設疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟。互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

 。ㄗ寣W生談一下本節(jié)課的學習體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性。"問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

  六、作業(yè)

  習題2。4 第1題,第2題

  進一步鞏固所學的知識。

  教學設計說明

  "問題是數(shù)學的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導剖析,最終形成概念。

  反函數(shù)的概念是教學中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調(diào)動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維。使學生自然成為學習的主人。

高中數(shù)學教案15

  教學目標:

  1.結合實際問題情景,理解分層抽樣的必要性和重要性;

  2.學會用分層抽樣的方法從總體中抽取樣本;

  3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關系.

  教學重點:

  通過實例理解分層抽樣的方法.

  教學難點:

  分層抽樣的步驟.

  教學過程:

  一、問題情境

  1.復習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學生活動

  能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

  指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

  由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,

  所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.

  三、建構數(shù)學

  1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

  說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

  2.三種抽樣方法對照表:

  類別

  共同點

  各自特點

  相互聯(lián)系

  適用范圍

  簡單隨機抽樣

  抽樣過程中每個個體被抽取的概率是相同的

  從總體中逐個抽取

  總體中的個體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時采用簡單隨機抽樣

  總體中的個體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進行抽取

  各層抽樣時采用簡單隨機抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 。1)分層:將總體按某種特征分成若干部分.

  (2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.

 。3)確定各層應抽取的樣本容量.

 。4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽。,綜合每層抽樣,組成樣本.

  四、數(shù)學運用

  1.例題.

  例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

  (2)①教育局督學組到學校檢查工作,臨時在每個班各抽調(diào)2人參加座談;

 、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學;

 、勰嘲嘣┚蹠,要產(chǎn)生兩名“幸運者”.

  對這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡單隨機抽樣

  B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

  C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

  D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

  例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總人數(shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛

  喜愛

  一般

  不喜愛

  2435

  4567

  3926

  1072

  電視臺為進一步了解觀眾的`具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應怎樣進行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,

  則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡單隨機抽樣方法抽。

  答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

  數(shù)分別為12,23,20,5.

  說明:各層的抽取數(shù)之和應等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

 。3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.

 。2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

  (3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

  五、要點歸納與方法小結

  本節(jié)課學習了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

【高中數(shù)學教案】相關文章:

高中必修數(shù)學教案01-07

高中數(shù)學教案09-28

高中必修4數(shù)學教案03-13

高中數(shù)學教案10-26

高中數(shù)學教案【薦】11-23

高中數(shù)學教案【推薦】11-22

高中數(shù)學教案【精】11-20

【熱門】高中數(shù)學教案11-21

【薦】高中數(shù)學教案11-14

【精】高中數(shù)學教案11-13