【必備】初中數(shù)學優(yōu)秀教案
作為一位兢兢業(yè)業(yè)的人民教師,通常需要準備好一份教案,教案是實施教學的主要依據(jù),有著至關重要的作用。寫教案需要注意哪些格式呢?下面是小編精心整理的初中數(shù)學優(yōu)秀教案,歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學優(yōu)秀教案1
教學目標:
情意目標:培養(yǎng)學生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學重點、難點
重點:等腰梯形性質(zhì)的`探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
。ㄒ唬⿲
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學生回顧本課教學內(nèi)容,并提出尚存問題;
學生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數(shù)學優(yōu)秀教案2
教學目的
1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數(shù)學模型的作用。
2.使學生會列一元一次方程解決一些簡單的應用題。
3.會判斷一個數(shù)是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應用題。
2.難點:弄清題意,找出“相等關系”。
教學過程
一、復習提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據(jù)題意,得
1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授:
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的.客車多少輛? (讓學生思考后,回答,教師再作講評)
算術法:(328-64)÷44=264÷44=6(輛)
列方程:設需要租用x輛客車,可得。
44x+64=328 (1)
解這個方程,就能得到所求的結(jié)果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發(fā)現(xiàn)同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習
教科書第3頁練習1、2。
四、小結(jié)。
本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業(yè) 。
教科書第3頁,習題6.1第1、3題。
初中數(shù)學優(yōu)秀教案3
一、 教材內(nèi)容及設置依據(jù)
【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運算的回顧,學習包括分數(shù)和小數(shù)的有理數(shù)的加減混合運算,理解其方法;應用有理數(shù)的加減混合運算,解決實際問題。
【設置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學生的數(shù)學思維、數(shù)學能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應日常生活準備條件)、可接受性原則(即考慮學生的認識水平、接受能力、生理心理特征,又要著眼于學生的不斷發(fā)展);還要與現(xiàn)實生活、科技發(fā)展相適應,逐步深透現(xiàn)代教學思想。
二、教材的地位和作用
本節(jié)內(nèi)容是在學習了有理數(shù)的加法、有理數(shù)的減法的基礎上學習的,是前面知識的延伸和加強,同時又是后面所要學習的有理數(shù)的乘法、除法及有理數(shù)的混合運算的基礎,
特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的`學習提供了
類比依據(jù)。也為后面學習代數(shù)式的合并同類項及有關的恒等變形奠定了基礎,因此具有承上啟下的重要作用。
三、對重點、難點的處理
【對重點的處理】本節(jié)的重點是有理數(shù)加減混合運算的方法及在實際生活中的應用。為了突出重點,教師應盡量從實際問題引入、應盡可能的在課堂上創(chuàng)設具體教學情境,注重使學生在具體情境中體會運算的方法。同時我們也可以根據(jù)學生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習”和“習題”的內(nèi)容劃分成不同的板塊,如:1、知識鞏固型 2、實際應用型 3、方法多變型 4、知識拓展型等。
【對難點的處理】對于難點的處理,因為新教材“強調(diào)要給學生足夠的空間和時間”,因此教學時我們應盡量從學生已有的生活經(jīng)驗和已有的知識經(jīng)驗出發(fā),或用“已知”去解決“未知”的思想引導學生,鼓勵學生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學生理解有理數(shù)的加減運算可以統(tǒng)一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學生通過具體情境對“代數(shù)和”加以體會)
四、關于教學方法的選用
根據(jù)本節(jié)課的內(nèi)容和學生的實際水平,本節(jié)課可采用的方法:
1、情境體驗:通過教師創(chuàng)設貼近學生生活實際的教學情境,讓學生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學生解決問題的能力。
2 、引導發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點,符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發(fā)展相結(jié)合、教師的主導作用與學生的主體地位相統(tǒng)一等原則。引導發(fā)現(xiàn)法的關鍵是通過教師的引導啟發(fā),充分調(diào)動學生學習的主動性。
3、小組合作、探究討論:通過合作討論,使學生形成一個“學習共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補充,分享彼此的思考、經(jīng)驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。
五、關于學法的指導
“授人以魚,不如授人以漁”,在教給學生知識的同時,要教給他們好的學習方法,讓他們“會學習”在本節(jié)課的教學中,在提出問題后,要鼓勵學生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學是生活實際中的數(shù)學、大自然中的數(shù)學,萌生了用數(shù)學解決實際問題的意識、愿望。
六、課時安排:1課時
教學程序:
一、復習鋪墊:
首先利用多媒體出示一組有關有理數(shù)的加法、減法的題目,讓學生進行速算比賽,看誰做的又對又快。
1、45+(-23) 2、9-(-5)
3、-28-(-37)4、(-13 )+0
5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)
從四排學生中個推選一名學生代表板演6、7、8、題。
通過比賽的方式,符合學生的心理特點,迎合了學生好勝的心理,激起了學生學習的內(nèi)在動力,激發(fā)了學習的興趣。
然后教師與學生一起對題目進行評判,對優(yōu)勝的學生進行表揚,對其他學生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關鍵要有信心,要有高昂的斗志。通過練習,學生已在不知不覺中復習了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學論中的鞏固性原則,為后面學習有理數(shù)的加減混合運算奠定了基礎。
二、新知探索:
1、 出示引例1: 一架飛機作特技表演,起飛后的高度變化如下表: 高度變化 記作
上升4.5千米 +4.5千米
下降3.2千米 -3.2千米
上升1.1千米 +1.1千米
下降1.4千米 -1.4千米
此時飛機比起飛點高了多少米?
讓學生分組探究討論,讓學生發(fā)表自己的見解,不難得出兩種算法:
① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4
。1.3+1.1+(-1.4) =1.3+1.1-1.4
。2.4+(-1.4) =2.4-1.4
=1千米 =1千米
教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學生的合作討論、教師的引導、規(guī)納、總結(jié)可得出:加減法混合運算可以統(tǒng)一成加法;加法運算可以寫成省略括號及前面加號的形式。使學生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。通過小組合作,探究討論,讓每一個學
初中數(shù)學優(yōu)秀教案4
教學目標
知識
技能 1.通過觀察實驗,使學生了解圓心角的概念.
2.掌握在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應的其余各組量也相等,以及它們在解題中的應用.
過程
方法 通過復習旋轉(zhuǎn)的知識,產(chǎn)生圓心角的概念,然后用圓心角和旋轉(zhuǎn)的知識探索在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等,最后應用它解決一些具體問題,進一步理解和體會研究幾何圖形的各種方法.
情感
態(tài)度 激發(fā)學生觀察、探究、發(fā)現(xiàn)數(shù)學問題的興趣和欲望.
教學重點
在同圓或等圓中,相等的圓心角所對的弧相等,所對弦也相等及其兩個推論和它們的應用.
教學難點
探索定理和推導及其應用.
教學過程設計
教學程序及教學內(nèi)容 師生行為 設計意圖
一、導語這節(jié)課我們繼續(xù)研究圓的性質(zhì),請同學們完成下題.
1.已知△OAB,如圖所示,作出繞O點旋轉(zhuǎn)30、45、60的圖形.
2.圓是中心對稱圖形嗎?將圓旋轉(zhuǎn)任意角度后會出現(xiàn)什么情況?我們學過的幾何圖形中既是中心對稱圖形,又是軸對稱圖形的是?
二、探究新知
。ㄒ唬A心角定義
在紙上任意畫一個圓,任意畫出兩條不在同一條直線上的半徑,構(gòu)成一個角,這樣的角就是圓心角.如圖所示,AOB的頂點在圓心,像這樣,頂點在圓心的角叫做圓心角.
。ǘA心角、弧、弦之間的關系定理
1.按下列要求作圖并回答問題:
如圖所示的⊙O中,分別作相等的圓心角AOB和AOB將圓心角AOB繞圓心O旋轉(zhuǎn)到A‵OB‵的位置,你能發(fā)現(xiàn)哪些等量關系?為什么?
得到: 在同一個圓中,相等的圓心角所對的弧相等,所對的弦相等.
2.在等圓中相等的圓心角是否也有所對的弧相等,所對的弦相等呢?
綜合1、2,我們可以得到關于圓心角、弧、弦之間的關系定理:
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
3.分析定理:去掉“在同圓或等圓中”這個條件,行嗎?
4.定理拓展:
○1在同圓或等圓中,如果兩條弧相等,那么它們所對的圓心角,所對的弦也分別相等嗎?
○2在同圓或等圓中,如果兩條弦相等,那么它們所對的圓心角,所對的弧也分別相等嗎?綜上得到
在同圓或等圓中,相等的弧所對的圓心角相等,所對的弦也相等.
在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角也相等.
綜上所述,同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應的`其余各組量也相等.
。ㄈ、定理應用
1.課本例1
2.如圖,在⊙O中,AB、CD是兩條弦,OEAB,OFCD,垂足分別為EF.
(1)如果AOB=COD,那么OE與OF的大小有什么關系?為什么?
(2)如果OE=OF,那么 與 的大小有什么關系?AB與CD的大小有什么關系?為什么?AOB與COD呢?
三、課堂訓練
完成課本83頁練習
補充:如圖3和圖4,MN是⊙O的直徑,弦AB、CD相交于MN上的一點P,APM=CPM.
(1)由以上條件,你認為AB和CD大小關系是什么,請說明理由.
。2)若交點P在⊙O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由.
四、小結(jié)歸納
1.圓心角概念.
2.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,則它們所對應的其余各組量都分別相等,及它們的應用.
五、作業(yè)設計
作業(yè):復習鞏固作業(yè)和綜合運用為全體學生必做;拓廣探索為成績中上等學生必做. 教師布置學生畫圖,復習旋轉(zhuǎn)知識,為探究本節(jié)課定理作鋪墊
學生通過畫圖復習旋轉(zhuǎn)知識,明白繞O點旋轉(zhuǎn),O點就是旋轉(zhuǎn)中心,旋轉(zhuǎn)30,就是旋轉(zhuǎn)角是30
學生畫一個圓,按教師要求操作,觀察,思考,交流,教師給出圓心角定義,
學生按照要求作圖,并觀察圖形,結(jié)合圓的旋轉(zhuǎn)不變性和相關知識進行思考,嘗試得出關系定理,再進行嚴格的幾何證明.
學生思考,類比同圓中得到的結(jié)論進行探究,猜想,并驗證
學生思考,明白該前提條件的不可缺性,師生分析,進一步理解定理.
教師引導學生類比定理獨立用類似的方法進行探究,得到推論
學生審題,理清題中的數(shù)量關系,由本節(jié)課知識思考解決方法.
教師組織學生進行練習,教師巡回檢查,集體交流評價,教師指導學生寫出解答過程,體會方法,總結(jié)規(guī)律.
讓學生嘗試歸納,總結(jié),發(fā)言,體會,反思,教師點評匯總
通過學生親自動手操作發(fā)現(xiàn)圓的旋轉(zhuǎn)不變性,為后續(xù)探究打下基礎
通過該問題引起學生思考,進行探究,發(fā)現(xiàn)關系定理,初步感知培養(yǎng)學生的分析能力,解題能力.
為繼續(xù)探究其推論奠定基礎.
感受類比思想,類比中全面透徹地理解和掌握關系定理和它的推論,并進行推廣,得到其他幾個定理,完整的把握所學知識.
給出一般敘述,以其更好的應用.
培養(yǎng)學生解決問題的意識和能力,體會轉(zhuǎn)化思想,化未知為已知,從而解決本題.
運用所學知識進行應用,鞏固知識,形成做題技巧
讓學生通過練習進一步理解,培養(yǎng)學生的應用意識和能力
歸納提升,加強學習反思,幫助學生養(yǎng)成系統(tǒng)整理知識的習慣
鞏固深化提高
板 書 設 計
課題
圓心角、弧、弦之間的關系定理 關系定理應用
1. 2. 歸納
教 學 反 思
初中數(shù)學優(yōu)秀教案5
教學內(nèi)容:
教科書第76頁,整式的加減單元復習。
教學目的和要求:
1.使學生對本章內(nèi)容的認識更全面、更系統(tǒng)化。
2.進一步加深學生對本章基礎知識的理解以及基本技能(主要是計算)的掌握。
3.通過復習,培養(yǎng)學生主動分析問題的習慣。
教學重點和難點:
重點:本章基礎知識的歸納、總結(jié);基礎知識的運用;整式的加減運算。
難點:本章基礎知識的歸納、總結(jié);基礎知識的運用;整式的加減運算。
教學方法:
分層次教學,講授、練習相結(jié)合。
教學過程:
一、復習引入:
1.主要概念:
(1)關于單項式,你都知道什么?
(2)關于多項式,你又知道什么?
引導學生積極回答所提問題,通過幾名同學的回答,復習單項式的`定義、單項式的系數(shù)、次數(shù)的定義,多項式的定義以及多項式的項、同類項、次數(shù)、升降冪排列等定義。
(3)什么叫整式?
在學生回答的基礎上,進行歸納、總結(jié),用投影演示:
整式
2.主要法則:
①提問:在本章中,我們學習了哪幾個重要的法則?分別如何敘述?
、谠趯W生回答的基礎上,進行歸納總結(jié):
整式的加減
二、講授新課:
1.例題:
例1:找出下列代數(shù)式中的單項式、多項式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:單項式有4xy, ,0,m,―2.01×105;多項式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此題由學生口答,并說明理由。通過此題,進一步加深學生對于單項式、多項式、整式的定義的理解。
例2:指出下列單項式的系數(shù)、次數(shù):ab,―x2, xy5, 。
解:ab:系數(shù)是1,次數(shù)是2; ―x2:系數(shù)是―1,次數(shù)是2;
xy5:系數(shù)是 ,次數(shù)是6; :系數(shù)是― ,次數(shù)是9。
此題在學生回答過程中,及時強調(diào)“系數(shù)”及“次數(shù)”定義中應注意的問題:系數(shù)應包括前面的“+”號或“―”號,次數(shù)是“指數(shù)之和”。
例3:指出多項式a3―a2b―ab2+b3―1是幾次幾項式,最高次項、常數(shù)項各是什么?
解:是三次五項式,最高次項有:a3、―a2b、―ab2、b3,常數(shù)項是―1。
例4:化簡,并將結(jié)果按x的降冪排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通過此題強調(diào):(1)去括號(包括去多重括號)的問題;(2)數(shù)字與多項式相乘時分配律的使用問題。
例5:化簡、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化簡的結(jié)果是:3ab2,求值的結(jié)果是 。
例6:一個多項式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求這個多項式,并求當x=― ,y= 時,這個多項式的值。
解:此多項式為3x3―5x2y―2y3;值為― 。
3.課堂練習:
課本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、課堂作業(yè):
課本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板書設計:
教學后記:
、俦竟(jié)是全章的復習課。首先是復習本章的主要概念和法則。在上節(jié)課所留復習作業(yè)的基礎上,一上課,就進行課堂提問,“關于單項式,你都知道什么”,“關于多項式,你又知道什么”。通過學生的回答,既可檢查學生作業(yè)完成的情況,又充分地調(diào)動學生積極性,使學生主動參與到課堂中來。而且這樣的問題具有一定的開放性,可使學生的思維發(fā)散,把他們所知道的有關內(nèi)容都說出來。通過對一個問題的多個側(cè)面地回答,可進一步加深學生對基礎知識的理解與重視,又可培養(yǎng)他們主動分析問題的習慣。
、趯τ趹搹娬{(diào)的問題,如果只是泛泛而談,效果不大。因此,在復習了本章的主要知識后,出了一組練習,通過具體的題目,強調(diào)有關的問題,將給學生留下更深的印象,學習效果會更好。
初中數(shù)學優(yōu)秀教案6
●教學目標
。ㄒ唬┙虒W知識點
1.掌握極差、方差、標準差的概念.
2.明白極差、方差、標準差是反映一組數(shù)據(jù)穩(wěn)定性大小的.
3.用計算器(或計算機)計算一 組數(shù)據(jù)的標準差與方差.
。ǘ┠芰τ柧氁
1.經(jīng)歷對數(shù)據(jù)處理的過程,發(fā)展學生初步的統(tǒng)計意識和數(shù)據(jù)處理能力.
2.根據(jù)極差、方差、標準差的大小,解決問題,培養(yǎng)學生解決問題的能力.
。ㄈ┣楦信c價值觀要求
1.通過解決現(xiàn)實情境中問題,增強數(shù)學素養(yǎng),用數(shù) 學的眼光看世界.
2.通過小組活動,培養(yǎng)學生的合作意識和能力.
●教學重點
1.掌握極差、方差或標準差的概念,明白極差、方差、標準差是刻畫數(shù)量離散程度的幾個統(tǒng)計量.
2.會求一組數(shù)據(jù)的極差、方差、標準差,并會判斷這組數(shù)據(jù)的穩(wěn)定性 .
●教學難點
理解方差、標準差的概念,會求一組數(shù)據(jù)的方差、標準差.
●教學方法
啟發(fā)引導法
●教學過程
、.創(chuàng)設現(xiàn)實問題情景,引入新課
[師]在信息技術不斷發(fā)展的社會里,人們需要對大量紛繁復雜的信息作出恰當?shù)倪x擇與判斷.
當我們?yōu)榧尤搿癢TO”而欣喜若狂的時刻,為了提高農(nóng)副產(chǎn)品的國際競爭力,一些行業(yè)協(xié)會對農(nóng)副產(chǎn)品的規(guī)格進行了劃分.某外貿(mào)公司要出口 一批規(guī)格為75 g的雞腿.現(xiàn)有2個廠家提供貨源.
[生](1)根據(jù)20只雞腿在圖中的分布情況,可知甲、乙兩廠被抽取雞腿的平均質(zhì)量分別為75 g.
(2)設甲、乙兩廠被抽取的雞腿的平均質(zhì)量 甲, 乙,根據(jù)給出的數(shù)據(jù),得
甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)
乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)
。3) 從甲廠抽取的這20只雞腿質(zhì)量的最大值是78 g,最小值是72 g,它們相差78-72=6 g;從乙廠抽取的這20只雞腿質(zhì)量的最大值是80 g,最小值是71 g,它們相差80-71=9(g).
。4)如果只考慮雞腿的規(guī)格,我認為外貿(mào)公司應購買甲廠的雞腿,因為甲廠雞腿規(guī)格比較穩(wěn)定,在75 g左右擺動幅度較小.
。蹘煟莺芎.在我們的實際生活中,會出現(xiàn)上面的情況,平均值一樣,這里我們也關心數(shù)據(jù)與平均值的離散程度 .也就是說,這種情況下,人們除了關心數(shù)據(jù)的“平均值”即“平均水平”外,人們往往還關注數(shù)據(jù)的離散程度,即相對于“平均水平”的偏離情況.
從上圖也能很直觀地觀察出:甲廠相對于“平均水平”的偏離程度比乙廠相對于“平均水平” 的偏離程度小.
這節(jié)課我們就來學習關于數(shù)據(jù)的離散程度的幾個量.
、颍v授新課
。蹘煟菰谏厦鎺讉問題中,你認為哪一個數(shù)值是反映數(shù)據(jù)的離散程度的一個量呢?
。凵菸艺J為最大值與最小值的差是反映數(shù)據(jù)離 散程度的一個量.
。蹘煟莺苷_.我們把一組數(shù)據(jù)中最大數(shù)據(jù)與 最小數(shù)據(jù)的差叫極差.而極差是刻畫數(shù)據(jù)離散程度的`一個統(tǒng)計量.
。凵荩1)丙廠這20只雞腿質(zhì)量的平均數(shù):
丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)
極差為:79-72=7(g)
。凵菰诘冢2)問中,我認為可以用丙廠這20只雞腿的質(zhì)量與其平均數(shù)的差的和來刻畫這20只雞腿的質(zhì)量與其平均數(shù)的差距.
甲廠20只雞 腿的質(zhì)量與相應的平均數(shù)的差距為:
。75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)
=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;
丙廠20只雞腿的質(zhì)量與相應的平均數(shù)的差距為:
。75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0
由此可知不能用各數(shù)據(jù)與平均數(shù)的差的和來衡量這組數(shù)據(jù) 的波動大小.
數(shù)學上,數(shù)據(jù)的離散程度還可以用方差或標準差來刻畫.
其中方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即
s2= [(x1- )2+(x2- )2+…+(xn- )2]
其中 是x1,x2,…,xn的平均數(shù),s2是 方差,而標準差就是方差的算術平方根.
。凵轂槭裁捶讲罡拍钪幸詳(shù)據(jù)個數(shù)呢?
。蹘煟菔菫榱讼龜(shù)據(jù)個數(shù)的印象.
由此我們知道:一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定.
。凵輼O差還比較容易算出.而方差、標準差算起來就麻煩多了.
。蹘煟菸覀兛梢允褂糜嬎闫,它可以很方便地計算出一組數(shù)據(jù)的標準差與方差,其大體步驟是 ;進入統(tǒng)計計算狀態(tài),輸入數(shù)據(jù),按鍵就可得出標準差.
同學們可在自己的計算器上探 索計算標準差的具體操作
計算器一般不具有求方差的功能,可以先求出標準差,再平方即可求出方差.
。凵輘甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;
s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.
因為s甲2<s丙2.
所以根據(jù)計算的結(jié)果,我認為甲廠的產(chǎn)品更符合要求.
Ⅲ.隨堂練習
、.課時小結(jié)
這節(jié)課 ,我們著重學習:對于一組數(shù)據(jù),有時只知道它的平均數(shù)還不夠,還需要知道它的波動大;描述一組數(shù)據(jù)的波動大小的量不止一種,最常用的極差、方差、標準差;方差 和標準差既有聯(lián)系 ,也有區(qū)別.
、酰n后作業(yè)
、.活動與探究
甲、乙兩名學生進行射擊練習,兩人在相同條件下各射靶10次,將射擊結(jié)果作統(tǒng)計分析如下:
(1)請你填上表中乙學生的相關數(shù)據(jù);
(2)根據(jù)你所學的統(tǒng)計數(shù)知識,利用上述某些數(shù)據(jù)評價甲、乙兩人的射擊水平.
初中數(shù)學優(yōu)秀教案7
教學目標:
1、知識與技能:使學生經(jīng)歷相似多邊形概念的形成過程,了解相似多邊形的定義,并能根據(jù)定義判斷兩個多邊形是否相似。
2、過程與方法:在探索相似多邊形本質(zhì)特征的過程中,進一步發(fā)展學生歸納、類比、反思、交流等方面的能力,體會反例的作用。
3、情感態(tài)度與價值觀:通過觀察、推斷得到數(shù)學猜想、獲得數(shù)學結(jié)論的過程,體驗數(shù)學活動充滿了探索性和創(chuàng)造性。
教學重點:探索相似多邊形的定義過程,以及用定義去判斷兩個多邊形是否相似。
教學難點:探索相似多邊形的定義過程。
教學過程:
(一)創(chuàng)設情景,導入新課。(3分鐘)
由于學生已經(jīng)學習了形狀相同的圖形,在這里我向?qū)W生展示一組圖片(課件),引導學生從中找出形狀相同的圖形。學生回答后,利用課件演示抽象出多邊形。
大多數(shù)學生可能會指出黑板邊框的內(nèi)外邊緣所圍成的矩形的形狀也相同。我緊接著創(chuàng)設懸念:這兩個矩形的形狀相同嗎?
利用課件演示,把內(nèi)邊緣的矩形的長和寬按相同比例放大后不能與外邊緣矩形重合。此時的學生肯定倍感疑惑,急切想探個究竟。教師順勢導入新課:
那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來探究相似多邊形。
(二)自主學習,合作探究。(15分鐘)
1、動手實驗,初步感知定義。
課前發(fā)給每個小組一套相似多邊形的圖片(其中包括兩個相似三角形、一個等邊三角形、兩個相似四邊形),組織學生按形狀相同給多邊形找朋友。然后引導學生以小組為單位從中選擇一組多邊形探究解決下面問題。
(1)在這兩個多邊形中,是否有相等的內(nèi)角?設法驗證你的猜想。
(2)在這兩個多邊形中,相等的內(nèi)角的兩邊是否成比例?
(設計意圖:引導學生分組討論、探究、驗證、交流,并進行演示,著重引導學生說明驗證的方法,無論學生提出什么樣的驗證方式,只要有道理,教師都應給予充分肯定和鼓勵。)
對相等內(nèi)角的兩邊是否對應成比例這個問題學生可能會感到困難,由于學生已經(jīng)學習了成比例線段,我會利用這一點啟發(fā)學生運用測量、計算的方法解決這一難點。
利用多媒體演示形狀相同的六邊形的對應角相等,然后讓學生觀察計算得到,相等的內(nèi)角的兩邊成比例。然后給出對應角、對應邊的概念,引導學生明確對應角、對應邊的含義。
2、特例探究,進一步體驗定義。 (課件出示問題)
例:下列每組圖形形狀相同,它們的對應角有怎樣的關系?對應邊呢?
(1)三角形ABC與正三角形DEF;
(2)正方形ABCD與正方形EFGH.
(設計意圖:引導學生通過自主探究解決這個問題后進行適當引申,使學生認識到:邊數(shù)相同的正多邊形都相似。)
3、歸納總結(jié),形成概念。
教師設問:回憶一下我們剛才探究過的每一組多邊形,你能發(fā)現(xiàn)它們的共同特點嗎?(課件出示四組圖形)
(設計意圖:引導學生嘗試用自己的語言敘述定義,教師給予規(guī)范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來引導學生回憶表示全等三角形時應注意的問題,也就是要把表示對應頂點的字母寫在對應的位置上,然后引導學生用類比的方法得到:在記兩個多邊形相似時也要把表示對應頂點的字母寫在對應的位置上,說明相似比與兩個多邊形敘述的順序有關。)
4、深化理解。
(1)滿足什么條件的兩個多邊形相似?
(2)如果兩個多邊形相似,那么它們的對應角和對應邊有什么關系?
(設計意圖:使學生認識到:相似多邊形的定義既是最基本最重要的判定方法,也是最本質(zhì)最重要的特征。)
(三)辨析研討,知識深化。(14分鐘)
1、議一議:
(1)觀察下面兩組圖形,圖(1)中的兩個圖形相似嗎?為什么?圖(2)中的兩個圖形呢?與同桌交流。 (課件出示圖形)
(2)如果兩個多邊形不相似,那么它們的各角可能對應相等嗎?它們的各邊可能對應成比例嗎?
(3)如果兩個菱形相似,那么他們需要滿足什么條件?
(設計意圖:為了培養(yǎng)學生從多角度理解問題,我運用教材中兩個典型的反例,引導學生討論探究,使學生認識到:不相似的兩個多邊形的角也可能對應相等,不相似的兩個多邊形的邊也可能對應成比例;反過來說:只具備各角分別對應相等或各邊分別對應成比例的多邊形不一定相似。進而使學生明確:判斷兩個多邊形形相似,各角分別對應相等、各邊分別對應成比例這兩個條件缺一不可。通過正反兩方面的對照,能使學生更深刻地理解相似多邊形的定義。這是個易錯點,教學時應注意給學生留出充分思考交流的時間。另外在設計時,我在教材原有內(nèi)容的基礎上添加了菱形的情況(見課件),引導學生探索兩個菱形相似需要滿足什么樣的條件。)
2、做一做。
設問:學到這兒,你認為黑板邊框內(nèi)外邊緣所成的這兩個矩形相似嗎?請你計算說明。課件出示問題:
一塊長3m、寬1.5m的'矩形黑板,鑲在其外圍的木質(zhì)邊框?qū)?.5cm.邊框的內(nèi)外邊緣所成的矩形相似嗎?為什么?(學生自主探索解決)
(設計意圖:為了滿足學生多樣化的學習需求,使不同的學生都能獲得令自己滿意的數(shù)學知識,我把此題進行了適當?shù)耐卣购脱由臁?
拓展一:如果將黑板的上邊框去掉,其他條件不變。
那么邊框內(nèi)外邊緣所成的矩形相似嗎?為什么?
拓展二:在拓展一的基礎上,如果矩形的長為2a,寬為a,
邊框的寬度為x。那么邊框內(nèi)外邊緣所成的矩形還相似嗎?為什么?
(設計意圖:引導學生討論計算,解決問題。目的是讓學生明確并不是所有相互套疊的兩個矩形都不相似。使學生初步認識到直觀有時是不可靠的,研究數(shù)學問題需要在提出猜想的基礎上進行推理和計算,幫助學生養(yǎng)成嚴謹?shù)膶W風。)
(四)學以致用,鞏固提高。(6分鐘)
慧眼識金!
1、判斷下列各題是否正確:
(1)所有的矩形都相似。
(2)所有的正方形都相似。
(3)對應邊成比例的兩個多邊形相似 問題解決!
2、下圖中兩面國旗相似,則它們對應邊的比為 。
3、如圖,兩個正六邊形廣場磚的邊長分別為a和b,它們相似嗎?為什么?
(課件出示圖形)
(設計意圖:為了體現(xiàn)相似圖形在生活中的廣泛應用,我以實際問題為背景設計練習題。這是一組基礎題,意在鞏固相似多邊形的定義以及相似比的計算。)
(五)課堂小結(jié),知識升華。(2分鐘)
師生共同完成。
(設計意圖:教師首先肯定學生在課堂中大膽的猜想和思維的積極性,然后引導學生從幾方面進行反思:我學會了什么,我最感興趣的是,我發(fā)現(xiàn)了什么,我能解決,我獲得的數(shù)學方法是幫助學生構(gòu)成新的知識網(wǎng)絡,形成技能。)
(六)布置作業(yè):
1、 P113 習題第3題
2、畫一畫:在方格紙中畫出兩個相似多邊形。
3、探究題:小林在一塊長為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框?qū)挒?0cm,邊框內(nèi)外邊緣所圍成的兩個矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對課堂上做一做的再次拓展和延伸:當矩形的長與寬的比不再是2:1時,邊框內(nèi)外邊緣所圍成的兩個矩形還相似嗎?
板書設 4、相似多邊形
定義: 各角對應相等,
各邊對應成比例
表示方法:∽
相似比:
初中數(shù)學優(yōu)秀教案8
4.2.(一)
教材分析:
本節(jié)課是緊接《平行四邊形的性質(zhì)》一節(jié),其探究的主要內(nèi)容是“兩條對角線互相平分的四邊形是平行四邊形”,以及“一組對邊平行且相等的四邊形是平行四邊形”這兩種判別方法。它是在學生掌握了平行線、三角形全等及簡單圖形的平移和旋轉(zhuǎn)、平行四邊形的定義、性質(zhì)等基礎性知識上學習的。在教學內(nèi)容上起著承上啟下的作用。首先,在探索方式上運用了學習機“圖形計算器”的度量、旋轉(zhuǎn)、平移等方法、其次、在探究判別條件的合理性上和運用判別條件時除用到了全等三角形的相關知識,還可以通過直觀體驗的方法來獲取信息。其次,平行四邊形的判別條件是研究特殊的平行四邊形的基礎;再有,平行四邊形判別條件的探究模式從方法上為)(研究特殊的平行四邊形奠定了基礎。并且,本節(jié)內(nèi)容還是學生運用化歸思想的良好素材。教材從學生年齡特征、文化知識的實際水平出發(fā),先讓學生動手做,動腦思考,然后與同伴交流、利用學習機“圖形計算器”探索、總結(jié)歸納,升華得出平行四邊形的判別方法,再用這些方法去對四邊形是否是平行四邊形進行判別。這樣的安排使抽象的推理讓學生更易于接受,并能在整個教學過程中真正享受到探索的樂趣。
教學目標:
1.經(jīng)歷并了解平行四邊形判別方法的探索過程,使學生逐步掌握說理的基本方法。
探索并掌握平行四邊形的兩種判別條件,能根據(jù)判別方法進行相關的應用。
2.在探索過程中發(fā)展學生的合理推理意識、主動探究的習慣。
體驗數(shù)學活動來源于生活又服務于生活,提高學生的學習興趣。
3.在操作學習機的“圖形計算器”活動過程中,加深師生的情感。培養(yǎng)學生的觀察能力,并提高學生的學習興趣。在學習過程中,來體會平行四邊形的圖形美和內(nèi)在美。同時使“圖形計算器”真正成為學生的學具。
教學重點:探索并掌握平行四邊形的判別條件。(一組對邊平行且相等的四邊形是平行四邊形;兩條對角線互相平分的四邊形是平行四邊形)。
教學難點:經(jīng)歷平行四邊形判別條件的探索過程,發(fā)展學生的合情推理意識、主動探索的'習慣,逐步掌握說理的基本方法。
教學媒體設計:
為了實現(xiàn)教學目標、優(yōu)化教學過程、突破教學難點、充分調(diào)動學生的各種感官、吸引注意力,課堂上主要采用諾亞舟學習機的“圖形計算器”進行輔助教學,通過大屏幕媒體展示教學和學生對“圖形計算器”充分利用,使教學過程與知識發(fā)展過程和思維過程三者同步,分別在創(chuàng)設情境;觀察、探索;理順、歸納;運用、提高;回顧、反思;布置作業(yè)環(huán)節(jié)都將發(fā)揮“圖形計算器”的實戰(zhàn)功能、讓學生真正做到課上聽懂、理解透徹。將學生的課堂練習成果進行快速展示,從而節(jié)約時間,提高課堂效率。
教學過程設計:(t—教師,s—學生)
問題與情境師生行為設計意圖
活動板塊1
前面我們已經(jīng)學習了平行四邊形概念和性質(zhì),我們來復習:
。1)平行四邊形概念。
。2)平行四邊形性質(zhì)。
。3)如果我們自己作平行四邊形,你是如何說明理由的?
進而得出需進行平行四邊形判別條件的探究。
先由學生根據(jù)自主做圖的基礎上,進行猜想,具備什么條件的四邊形是平行四邊形,將猜想記錄到練習本上。利用學習機的“圖形計算器”將你的猜想進行驗證。
活動板塊2
在學生合作探究基礎上,對小組活動及時評價、引導。
同時觀察是否有小組已經(jīng)經(jīng)過猜想、通過實驗驗證的方法獲得了平行四邊形判別條件。
適時地將學生的探究方向指引到通過平行四邊形的性質(zhì)來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。
適時地選出一小組成員在臺前利用教師學習機的“圖形計算器”通過大屏幕演示小組成果…
得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。
活動板塊3
學生繼續(xù)活動,探究平行四邊形判別的其他方法。
適時地將學生的探究方向指引到通過平行四邊形的性質(zhì)來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。
適時地選出一小組成員在臺前利用教師學習機的“圖形計算器”通過大屏幕演示小組成果…
得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。
活動板塊4
通過小結(jié)后,借助大屏幕展示學習機的“圖形計算器”中預先保存的練習題。
活動板塊5
小結(jié)及學生談感受、體會、特別是對學習機的使用情況談體會和認識。
活動板塊6
課后思考題:(將問題的探究記錄在學習機的“圖形計算器”中保存)
1.平行四邊形abcd中,在對角線所在直線上取ae、cf,使ae=cf,連接be、df,試說明:be=df。
2.利用學習機的“圖形計算器”制作一組以平行四邊形為基本圖案的美麗圖形。
t:提出復習概念和性質(zhì)。
s:思考,回答結(jié)合一起
復習。
s:思考、作圖、自主參與交流。
t:引導、合作,對小組活動及時評價。
t:注意s猜想、驗證過程中出現(xiàn)哪些問題,他們想如何解決所遇到的問題。
t:引導發(fā)展s的探究意識和合作中團結(jié)解決所遇到的各種問題。
t:引導和補充。關注學生是否交流方法,互動學習。能否發(fā)現(xiàn)問題,研究并解決問題
s:互動學習,提出論證方法。
t:引導、合作,對回答問題及時評價。
s:通過對學具學習機的“圖形計算器”的自主探求,獲得平行四邊形判別方法。
s:小組成員合作,其他學生觀察、思考得出探究的正確方向。
s:互動學習,提出論證方法。
t:引導、合作,對回答問題及時評價。
t:關注學生是否交流方法,互動學習。能否發(fā)現(xiàn)問題,研究并解決問題
s:小組成員合作,其他學生觀察、思考得出探究的正確方向。
t:根據(jù)授課情況,板演解題過程,或?qū)W生口述解題過程。s:板演或口述。
t:演示引例,解決具體問題中感受應用的價值。
s:暢所欲言
t:進行補充,總結(jié)。
s:小組一名同學記錄問題題干,另一名同學在學習機的“圖形計算器”上記錄下圖形。課后將問題的探究記錄在學習機的“圖形計算器”中保存
立足于舊知識的基礎上,引導學生的注意力。
在情境引入中充分使用學習機“圖形計算器”來促進學生學習過程。
為全體學生提供借助“圖形計算器”為基礎平臺,使全體學生都有信心學習數(shù)學知識,調(diào)動學生積極性,主動地參與到課程過程中來,樹立學習的信心。為教學目標1服務。
通過全體學生借助“圖形計算器”,獲得直觀的平行四邊形判別方法的印象,通過小組間的合作探究,更容易將所獲得的信息結(jié)論加以認識、記憶。
學生在學習過程中,對學習機的“圖形計算器”的自主發(fā)現(xiàn)時,大膽創(chuàng)新,想解決問題。教師起引導者作用,引入符號語言,使學生輕松愉悅地接受并獲取經(jīng)驗為今后學習特殊四邊形打基礎。達成目標1。
直覺思維能力是數(shù)學注意培養(yǎng)發(fā)展的能力之一,它有利于人的探究能力的成長和創(chuàng)新精神培養(yǎng)。
提引問題時教師起組織者作用,使學生感受師生合作、生生合作的愉快,不斷的對學具學習機的“圖形計算器”的自主探求,獲得數(shù)學發(fā)展,激發(fā)學生的學習熱情,調(diào)動學生學習自主性。共同發(fā)展,達成目標1.2。
在學生最近的知識發(fā)展區(qū)建立新的生長點,解釋應用與拓展的學習主題,在本活動中得以體現(xiàn)。達成教學目標2。
創(chuàng)設一個平等和諧的暢談空間,調(diào)動學生的積極性,養(yǎng)成良好的總結(jié)習慣,善于從能力,情感、態(tài)度等方面關注學生對課堂整體感受,發(fā)現(xiàn)集體的力量是無窮的,培養(yǎng)集體主義精神。提供一發(fā)展平臺,給學生留有學習探索的空間。
展示提出問題,為下節(jié)課的學習提出預想。并利用“圖形計算器”探求問題,帶來直觀體驗,同時培養(yǎng)學生的觀察能力,并提高學生的學習興趣。
初中數(shù)學優(yōu)秀教案9
知識點:
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
教學目標:
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查重難點與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的.頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
教學過程:
因式分解知識點
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
。1)提公因式法
如多項式
其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。
。2)運用公式法,即用
寫出結(jié)果。
。3)十字相乘法
對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
。5)求根公式法:如果有兩個根X1,X2,那么
2、教學實例:學案示例
3、課堂練習:學案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學案作業(yè)
7、教學反思:
初中數(shù)學優(yōu)秀教案10
教學目的:
1、在解決實際問題的過程中,進一步鞏固形如ax+b=c、ax-b=c的方程的解法,同時理解并掌握形如ax÷b=c的方程的解法,會列上述方程解決兩步計算的實際問題。
2、提高分析數(shù)量關系的能力,培養(yǎng)學生思維的靈活性。
3、在積極參與數(shù)學活動的過程中,樹立學好數(shù)學的信心。
教學重點、難點:
引導學生獨立分析問題,找出題目中的等量關系。
教學對策:
在積極參與數(shù)學活動的過程中,樹立學好數(shù)學的信心。
教學準備:
教學光盤
教學過程:
一、復習準備
1、解方程(練習一第6題的第1、3小題)
4x+12=50 2.3x-1.02=0.36
學生獨立完成,再指名學生板演并講評,集體訂正。
二、嘗試練習
師:剛才的兩道題同學們完成得很好,這道題你們還能自己解決嗎?試試看。
出示:30x÷2=360
學生獨立嘗試完成,全班交流。
指名學生說一說,解這個方程是第一步需要做什么?這樣做依據(jù)了等式的什么性質(zhì)?
三、鞏固練習
1、出示練習一第7題。
(1)分析數(shù)量關系
提問:誰來說說三角形的面積公式是怎樣的?根據(jù)學生回答板書:S=ah÷2。聯(lián)系這個公式你能找出數(shù)量之間的相等關系嗎?(生獨立思考后在小組內(nèi)交流)指名口答。你覺得在這些數(shù)量關系中,哪一個等量關系適合列方程?根據(jù)這個數(shù)量關系我們可以列出怎樣的方程?板書:1.3x÷2=0.39。
第⑵題生獨立思考并列出方程,在小組內(nèi)說說自己的思考過程后全班交流。板書:3x+18=19.8。
(2)學生獨立計算,并檢驗答案是否正確,全班核對。
小結(jié):在一個實際問題中,可能會有幾個不同的等量關系,我們應該選擇合適的等量關系來列方程。
2、練習一第8題。
學生讀題后可用自己喜歡的方法將與楊樹和松樹有關的信息分別列表整理(如列表,作標記等)
學生獨立解決后再說說數(shù)量之間有怎樣的數(shù)量關系,是根據(jù)什么樣的數(shù)量關系列出的方程,最后核對解方程的過程。(提示學生可從得數(shù)的合理性來初步檢驗)
3、練習一第9題。
學生獨立思考,指名分析數(shù)量關系,教師結(jié)合學生回答畫出線段圖幫助學生理解題意。
學生獨立解方程再集體訂正。
4、練習一第10題。
教師簡單介紹相關天文知識后,學生獨立解答,然后及時交流,教師及時講評。
5、練習一第11題。
學生讀題后教師提問:在本題中出現(xiàn)了兩個問題,那么我們在寫設句時要注意什么?(提示學生用不同的字母分別表示小亮出生時的身高和體重)
學生獨立解決,集體核對。結(jié)合學生板演情況進行講評,進一步規(guī)范學生的.書寫格式。
6、練習一第12題。
提問:你能看懂這張發(fā)票上所提供的信息嗎?數(shù)量間有怎樣的等量關系呢
學生獨立列方程解答,同桌同學互相檢查,再集體訂正。
7、練習一第13題。
學生閱讀第13題,理解后獨立解決問題,再交流。
教師再補充幾題,如:98.6、212華氏度相當于多少攝氏度等。
四、全課小結(jié)
說一說你這一節(jié)課的學習收獲及還有什么問題。
五、布置作業(yè)
完成配套習題。
教后反思:
本課時是一節(jié)練習課,練習目標有兩個,一是通過練習讓學生掌握形如ax+b=c和ax-b=c的方程的解法,會列方程解決兩步計算的實際問題;二是借助一些對比練習,讓學生感受方程的思想方法和價值。課前,我學習了高教導的“課前思考”,在今天的練習課中補充了兩組題目,讓學生進行對比練習。題目是這樣的:(1)果園里有桃樹60棵,比梨樹的3倍少6棵,梨樹有多少棵?(2)果園里有梨樹60棵,比桃樹的3倍少6棵,桃樹有多少棵?課堂上,我先請學生分析每一題的數(shù)量關系,然后選擇合適的方法來解答。學生們經(jīng)過分析、比較,發(fā)現(xiàn)類似第1小題這樣的題目適合用方程解,類似第2小題這樣的題目適合用算術方法解。另一組補充的題目是:(1)王老師買了3個足球,付了200元,找回8元。每個足球多少元?(2)水果店運進5箱蘋果,賣出56千克,還剩34千克。每箱蘋果多少千克?對于這兩題,我請學生認真分析數(shù)量關系后用自己喜歡的方法來解答,而且如果是列方程的話,試著列出不同的方程;如果是用算術方法解的可以列出不同的算式。課堂上學生思維活躍,在正確分析數(shù)量關系后列出了不同的方程或算式。
通過本節(jié)練習課,我想教師在教學中要更多地指導學生關注怎樣從一個個具體的問題情境中分析數(shù)量之間的相等關系,關注怎樣根據(jù)數(shù)量關系列出方程,從而在經(jīng)歷實際問題數(shù)學化的過程中,獲得對用方程解決實際問題策略的體驗,進一步豐富學生解決問題的策略,加深學生對方程作為一種重要的數(shù)學思想方法的理解。
初中數(shù)學優(yōu)秀教案11
一、教學目標
知識與技能:使學生了解正數(shù)與負數(shù)是從實際需要中產(chǎn)生的;
過程與方法:使學生理解正數(shù)與負數(shù)的概念,并會判斷一個數(shù)是正數(shù)還是負數(shù),初步會用正負數(shù)表示具有相反意義的量;
情感與態(tài)度:在負數(shù)概念的形成過程中,培養(yǎng)學生的觀察、歸納與概括的能力
二、教學重點和難點
負數(shù)的引入和意義
三、教學過程
創(chuàng)設情景,生活實例引入,觀察猜想,合作探究
。ㄒ唬膶W生原有的認知結(jié)構(gòu)提出問題
大家知道,數(shù)學與數(shù)是分不開的,它是一門研究數(shù)的學問現(xiàn)在我們一起來回憶一下,小學里已經(jīng)學過哪些類型的數(shù)?
學生答后,教師指出:小學里學過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分數(shù)和零(小數(shù)包括在分數(shù)之中),它們都是由于實際需要而產(chǎn)生的。
為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……
為了表示半小時、四元八角七分、……,我們需用到分數(shù)1/2和小數(shù)4。87、……
為了表示“沒有人”、“沒有羊”、……我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數(shù),零或分數(shù)、小數(shù)表示。
(二)、師生共同研究形成正負數(shù)概念
某市某一天的最高溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。
它們是具有相反意義的兩個量。
現(xiàn)實生活中,像這樣的相反意義的量還有很多。
例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155 米,“高于”和“低于”其意義是相反的。
又如,某倉庫昨天運進貨物 噸,今天運出貨物 噸,“運進”和“運出”,其意義是相反的。
同學們能舉例子嗎?
學生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?
現(xiàn)在,數(shù)學中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量筒明地表示出來了。
讓學生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
運進綱物 噸,記作+ ;運出貨物 噸,記作— 。
教師講解:什么叫做正數(shù)?什么叫做負數(shù)。
強調(diào),數(shù)0既不是正數(shù),也不是負數(shù),它是正、負數(shù)的界限,表示“基準”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號
。ㄈ、運用舉例 變式練習
例1 所有的正數(shù)組成正數(shù)集合,所有的.負數(shù)組成負數(shù)集合把下列各數(shù)中的正數(shù)和負數(shù)分別填在表示正數(shù)集合和負數(shù)集合的圈里:
—11,4,8,+73,—2,7, , ,—8,12, — ;
正數(shù)集合 負數(shù)集合
此例由學生口答,教師板書,注意加上省略號,說明這是因為正(負)數(shù)集合中包含所有正(負)數(shù),而我們這里只填了其中一部分。然后,指出不僅可以用圈表示集合,也可以用大括號表示集合
課堂練習
任意寫出6個正數(shù)與6個負數(shù),并分別把它們填入相應的大括號里:
正數(shù)集合:{ …},
負數(shù)集合:{ …}
四、課堂小結(jié)
由于實際生活中存著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負數(shù)正數(shù)是大于0的數(shù),負數(shù)就是在正數(shù)前面加上“—”號的數(shù)0既不是正數(shù),也不是負數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃
五、作業(yè)布置
1。北京一月份的日平均氣溫大約是零下3℃,用負數(shù)表示這個溫度
2。在小學地理圖冊的世界地形圖上,可以看到亞洲西部地中海旁有一個死海湖,圖中標著—392,這表明死海的湖面與海平面相比的高度是怎樣的?
3。在下列各數(shù)中,哪些是正數(shù)?哪些是負數(shù)?
—16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。
4。如果—50元表示支出50元,那么+200元表示什么?
5。河道中的水位比正常水位低0。2米記作—0。2米,那么比正常水位溫0。1米記作什?
6。如果自行車車條的長度比標準長度長2毫米記作+2毫米,那么比標準長度短3毫米記作么?
7。一物體可以左右移動,設向右為正,問:
。1)向左移動12米應記作什么?(2)“記作8米”表明什么?
初中數(shù)學優(yōu)秀教案12
學習方式:
從具體問題情景中探索體會合并同類項的含義。
逆用乘法分配律探求合并同類項法則。
通過多角度的練習辨別同類項,加 深對概念的理解,培養(yǎng)思維的嚴密性。
教學目標:
1、在具體情境中理解、掌握同類項的定義;
2、在具體情境中, 讓學生了解合并同類項的法則,能進行同類項的合并。
3、能運用合并同類項化簡多項式,并根據(jù)所給字母的值,求多項式的值。
4、通過“合并同類項”的學習,繼續(xù)培養(yǎng)學生的運算能力。
教學的重點、難點和疑點
1、重點:同類項的概念,合并同類項的法則。
2、難點:理解同類項的概念中所含字母相同,且相同字母的次數(shù)也相同的含義。
3、疑點:同類項與同次項的區(qū)別。
教具準備
投影儀(電腦)、自制膠片
教學過程:
提出問題
創(chuàng)設情景 (出示投影)
如圖的長方形由兩個小長方形組成,求這個長方形的面積。
、佼攲W生列出代數(shù)式 8n+5n時,可引導學生是否還有其他表示方法,啟發(fā)學生得出:
。8+5)n
、诮又龑W生寫出等式:
8n+5n=(8+5)n=13n
啟發(fā)學生觀察上式是怎樣的一種變化;
它類似于我們前面學過的什么運算律
為什么8n與5n可以合并成一項(組織學生充分
討論,從而引出同類項的概念)
、弁愴椀母拍
舉出一些具有代表性的同類項的實際例子。
如:-7a2b , 2a2b ;
8n , 5n ;
3x2, -x2
引導學生觀察上面給出的幾組代數(shù)式具有什么共同特點:
①所含的字母相同
、谙嗤帜傅.指數(shù)也相同
教師順勢提出同類項的概念
強調(diào)同類項必須滿足以上兩條
、芙Y(jié)合長方形面積問題,引出合并同類項的概念:把同類項合并成一項就叫做合并同類項。 學生觀察,思考
討論交流
(反例鞏固) 出示問題;
x與y,
a2b與ab2,
。3pa與3pa
abc與ac,
a2和a3 是不是同類項
。ńo學生留下足夠的思考時間,引導學生緊緊結(jié)合同類項的兩個條件進行判斷)
其中:a2b與ab2可讓學生充分討論交流。
。ń處煆娬{(diào)“必須是相同字母的指數(shù)相同”這句話的含義,從而分清同類項與同次項的區(qū)別)
。ㄒ龑W生題后反思,同類項與它們的系數(shù)無關,只與所含的字母及字母的指數(shù)有關)。
緊扣定義
加以判別
例1 根據(jù)乘法分配律合并同類項
(1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3
。ń處煆娬{(diào)乘法分配律的逆運用)
(學生板書完畢后,教師引導學生觀察合并的前后發(fā)生了什么變化?其中系 數(shù)怎樣變化的?字母及字母的指數(shù)又怎樣變化了)
由此引導學生總結(jié)出合并同類項的法則:
在合并同類項時,只把同類項的系數(shù)相加減,字母和字母的指數(shù)不變。
學生思考
解答(找二生板演其他學生獨立寫出過程)
總結(jié)法則
可根據(jù)情況適當復習關于乘法分配律的有關知識
通過上面的實例,學生對怎樣合并同類項的問題已有較深刻的印象,但還不能用完整的數(shù)學語言將其敘述出來,教師要積極引導,讓學生動腦思考。
應用法則
例2,合 并同類項
、3a+2b-5a-b
②-4ab+8-2b2-9ab-8
給學生留有足夠的獨立的思考時間
找二生到黑板上板演。
學生 板演后,教師組織 學生交流評價,根據(jù)出現(xiàn)的問題,作點拔,強調(diào)。
強調(diào):合并同類項的過程實質(zhì)上就是同類項的系數(shù)相加減的過程,在系數(shù)相加時,不要遺漏符號,字母和字母的指數(shù)都不變。
教師不給任何提示
學生在練習本上完成,然后同桌同學互相交換評判。
(二生到黑板上板演)
變式
應用 補充例題
例3,求代數(shù)式的值
①2x2-5x+x2+4x-3 x2-2 其中x=
、冢3 x2+5x-0.5 x2+x-1 其中x=2
出示 例題后,教師不要給任何提示,先讓學生獨立思考。
部分學生會直接把x= 代入式中去計算,出現(xiàn)這一情況后,教師可積極引導。
問:還有沒有其 他方法?學生仔細觀察后不難發(fā)現(xiàn)先合并化簡后,再代入求值,此時教師可提出讓學生對比分析哪種方法簡便。從而強調(diào),先化簡再求值會使運算變得簡便。
獨立完成
分析比較
尋求簡便方法
隨堂
練習 1、合并同類項
、3y+ y=__________
、3b-3a2+1+a3-2b=____ _______
③2y+6y+2xy-5=_____________
2、求代數(shù)式的值
8 p2-7q+6q-7p2-7
其中p=3 q=3
練習交流合作
教師可根據(jù)情況適當補充
小結(jié) 今天你學會了哪些知識?獲得了哪些方法,
有什么體會? 自己總結(jié)
作業(yè) 教材課后習題
初中數(shù)學優(yōu)秀教案13
一、教材、學情分析
“扇形統(tǒng)計圖”是義務教育課程標準實驗教科書浙江教育出版社七年級上冊第六章第四節(jié)的學習內(nèi)容,是從生活中實際問題出發(fā),結(jié)合新課程標準的理念,創(chuàng)造使用教材設計的一節(jié)課。生活中經(jīng)常需要收集數(shù)據(jù),而統(tǒng)計圖是展示數(shù)據(jù)的重要方法,經(jīng)常出現(xiàn)在報刊雜志媒體中,為此教科書安排了扇形統(tǒng)計圖的認識和制作。
學生在小學里曾經(jīng)學習過扇形統(tǒng)計圖,對扇形統(tǒng)計圖的意義、特點和制作有初步的了解。本節(jié)課數(shù)據(jù)的收集是從學生身邊熟悉的簡單問題入手,讓學生體會數(shù)據(jù)在現(xiàn)實生活中的作用,理解扇形統(tǒng)計圖的特點,并能從中獲得有用的信息,進而養(yǎng)成數(shù)據(jù)說話的習慣,初一學生積極要求上進喜歡表現(xiàn)自己,課堂上應該給學生廣闊的舞臺,讓學生充分思考、合作交流和探究,品嘗學習帶來的快樂。
二、教學目標
知識與技能目標:
1、通過實際問題認識扇形統(tǒng)計圖的含義和特點;
2、能從扇形統(tǒng)計圖中獲取正確的信息,并能作出合理的解釋和推斷。
過程與方法目標:
1、在收集數(shù)據(jù)的過程當中,學會合作學習,并了解收集數(shù)據(jù)的方法步驟;
2、在從扇形統(tǒng)計圖中獲取信息的過程當中,學會相互交流、相互評價;
3、在決策和形成猜想中的過程當中,感受收集和利用數(shù)據(jù)是非常重要的。
情感與態(tài)度目標:
1、通過從身邊的一些簡單問題,體驗數(shù)據(jù)在解決不少現(xiàn)實問題中是有用的;
2、在問題解決的過程當中,品嘗發(fā)現(xiàn)帶來的歡樂,樹立學好數(shù)學的自信心。
三、教學重點和難點
重點:在合作討論的過程當中體會數(shù)據(jù)在現(xiàn)實生活中的作用,理解扇形統(tǒng)計圖的特點,學會制作扇形統(tǒng)計圖。
難點:從扇形統(tǒng)計圖中盡可能多并且正確地獲取信息、利用數(shù)據(jù)進行分析、作出判斷。
四、教學和活動過程
(一)教學準備階段
1、利用PowerPoint制作一個簡單課件(沒有多媒體教室可采用小黑板展示);
2、布置學生準備,圓規(guī)、鉛筆、彩色筆、計算器、剪刀等工具。
(二)教學流程
1、引入 前面我們學習了折線統(tǒng)計圖和條形統(tǒng)計圖,今天我們將學習另外一種統(tǒng)計圖——扇形統(tǒng)計圖,大家小學里已經(jīng)學過,有印象嗎?能回憶起來是怎樣的一個圖嗎?學生回答(是一個圓分成幾部分),下面先讓大家欣賞一個扇形統(tǒng)計圖。(展示)同學們暑假肯定看了奧運會,能知道中國得了多少枚金牌嗎?(32)
射擊 4 12。5%
球類 8 25%
水上項目 8 25%
力量型項目 9 28。125%
田徑 2 6。25%
體操 1 3。125%
從這個統(tǒng)計圖中同學們能知道中國在什么項目上有優(yōu)勢,什么項目上薄弱呢?大家知道嗎?美國在什么項目上有優(yōu)勢?(田徑)
引入設計說明:
1、從學生感興趣的奧運會引入,激發(fā)學生的興趣,調(diào)節(jié)課堂氣氛。2、突出扇形統(tǒng)計圖的優(yōu)點——能直觀反映各部分在總體中所占的比例,區(qū)別于折線型統(tǒng)計圖和條形統(tǒng)計圖。
今天這節(jié)課我們來更深入一步認識一下扇形統(tǒng)計圖,并教大家如何來畫扇形統(tǒng)計圖。
2、出示課本學生快餐營養(yǎng)成份統(tǒng)計圖,學生觀察、思考,老師介紹扇形統(tǒng)計圖的特點。
用圓和扇形分別表示關于總體和各個組成部分數(shù)據(jù)的統(tǒng)計圖叫做扇形統(tǒng)計圖(或稱餅形圖),特點是能直觀地、生動地反映各部分在總體中所占的比例。
第一問、第二問學生回答;
第三問先說明什么是圓心角,頂點在圓心的角,課本上有摩天輪圖(學生觀察)。我們可以更直觀向?qū)W生介紹,用事先準備好圓紙片對折,再對折,把圓分成相等四部分,這個直角就是圓心角。
這樣學生更直觀、清楚地理解了圓心角的概念。
還有奔馳汽車的標志,把圓分成相等的'三部分,圓心角為120。
總結(jié):圓心角的度數(shù)為所占的比例乘以360。
請一個學生回答第三問。
3、做一做,P152,第(2)小題后面部分,老師分析。
4、合作活動,師生互動(主要讓學生學會畫扇形統(tǒng)計圖)
提出問題—→調(diào)查情況—→收集數(shù)據(jù)—→整理數(shù)據(jù)—→畫圖
問題:同學們從家里到學校交通情況。
學生舉手,一個學生點數(shù),另一個學生記錄,得出有關數(shù)據(jù)。
①步行 20人 40% 144 不妨設有50名學生,統(tǒng)計數(shù)據(jù)若如下(根據(jù)現(xiàn)場統(tǒng)計情況有不同的數(shù)據(jù))。
、隍T自行車 15人 30% 108
、圩 10人 20% 72
、芷渌 5人 10% 36
畫圖步驟:1、畫一個圓;
2、按各組成部分所占的比例算出各個扇形的圓心角度數(shù);
3、根據(jù)算出的各圓心角的度數(shù)畫出各個扇形,并注明相應的百分比,各比例的名稱可以注在圖上,也可用圖例表明。
注意:不用彩色,也可用白色、涂黑、斜線、網(wǎng)狀等表示,學會動手畫出扇形統(tǒng)計圖。
學生再看例題:氣象資料統(tǒng)計圖,計算圓心角度數(shù)需用計算器。
5、課內(nèi)練習,學生板演,一個學生計算數(shù)據(jù),一個學生畫出扇形統(tǒng)計圖。
6、作業(yè) 1)P153 ①②③④,思考題⑤
2)收集扇形統(tǒng)計圖,渠道來自報紙、雜志、上網(wǎng)查詢。
3)自己設計一個調(diào)查方案,用調(diào)查的數(shù)據(jù)制作一個扇形統(tǒng)計圖。
五、教學設計說明
新課程標準下的教學設計應全面貫徹六大基本理念,更加側(cè)重理念③和理念④,本節(jié)課突出生動有趣的特點,學習方式多樣化,讓學生成為課堂的主人。引入的情景設計是學生身邊的問題,例題采用學生自己收集數(shù)據(jù)、整理數(shù)據(jù),最后畫圖,讓學生感到一種自己研究成果的成就感,相比之下,比課本的氣象資料更具有感染力。作業(yè)中有一題是自己設計一個調(diào)查方案,培養(yǎng)學生動手能力、實踐能力,這就是新課程大力倡導的。
初中數(shù)學優(yōu)秀教案14
教學目標:
1、掌握一元二次方程的根與系數(shù)的關系并會初步應用。
2、培養(yǎng)學生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認識事物的規(guī)律。
4、培養(yǎng)學生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
教學重點與難點:
重點
根與系數(shù)的關系及其推導
難點
正確理解根與系數(shù)的關系。一元二次方程根與系數(shù)的關系是指一元二次方程兩根的和、兩根的積與系數(shù)的關系。
教學過程:
一、復習引入
1、已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值。
2、由上題可知一元二次方程的系數(shù)與根有著密切的關系。其實我們已學過的求根公式也反映了根與系數(shù)的關系,這種關系比較復雜,是否有更簡潔的關系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?
二、探索新知
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
。1)關于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關系?
。2)關于x的方程ax2+bx+c=0(a≠0)的'兩根x1,x2與系數(shù)a,b,c之間又有何關系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關系:
(1)關于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關系是:x1+x2=-p,x1x2=q(注意:根與系數(shù)關系的前提條件是根的判別式必須大于或等于零。)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數(shù)化為1,再利用上面的結(jié)論。
即:對于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1x2=ca
。ǹ梢岳们蟾浇o出證明)
例1不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,檢驗下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程。(你有幾種方法?)
例4已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值。
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1、根與系數(shù)的關系。
2、根與系數(shù)關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。
四、作業(yè)布置
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一個根為1,求另一根及m的值。
3、已知方程x2+bx+6=0的一個根為-2,求另一根及b的值
初中數(shù)學優(yōu)秀教案15
一、課題引入
為了讓學生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎是實數(shù)理論,實數(shù)的基礎是有理數(shù),而有理數(shù)的基礎則是自然數(shù).自然數(shù)為數(shù)學結(jié)構(gòu)提供了堅實的基礎.
對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的.數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.
為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).
我們把所學過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.
利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.
借助實際例子能夠讓學生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.
【初中數(shù)學優(yōu)秀教案】相關文章:
初中數(shù)學優(yōu)秀教案10-26
初中數(shù)學優(yōu)秀教案09-29
初中數(shù)學優(yōu)秀教案通用04-06
初中數(shù)學教案【優(yōu)秀】05-22
初中數(shù)學教案[優(yōu)秀]05-21