- 初中數(shù)學(xué)試講教案 推薦度:
- 相關(guān)推薦
初中數(shù)學(xué)試講教案
作為一位無私奉獻(xiàn)的人民教師,就不得不需要編寫教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么問題來了,教案應(yīng)該怎么寫?以下是小編幫大家整理的初中數(shù)學(xué)試講教案,歡迎大家分享。
初中數(shù)學(xué)試講教案1
一、教材內(nèi)容
認(rèn)識負(fù)數(shù)
二、教學(xué)目標(biāo)
1.引導(dǎo)學(xué)生在熟悉的生活情境中初步認(rèn)識負(fù)數(shù),能正確地讀、寫正數(shù)和負(fù)數(shù);知道0不是正數(shù)也不是負(fù)數(shù)。
2.使學(xué)生初步學(xué)會用負(fù)數(shù)表示一些日常生活中的實際問題,體驗數(shù)學(xué)與生活的聯(lián)系。
3.結(jié)合負(fù)數(shù)的歷史,對學(xué)生進(jìn)行愛國主義教育;培養(yǎng)學(xué)生良好的數(shù)學(xué)情感和數(shù)學(xué)態(tài)度。
三、教學(xué)重、難點
認(rèn)識負(fù)數(shù)的'意義。
四、教學(xué)過程
(一)談話交流
談話:同學(xué)們,剛才一上課大家就做了一組相反的動作,是什么?(起立、坐下。)今天的數(shù)學(xué)課我們就從這個話題聊起。(板書:相反。)我們周圍有很多的自然和社會現(xiàn)象中都存在著相反的情況,請看屏幕:(課件播放圖片。)太陽每天從東方升起,西方落下;公交車的站點有人上車和下車;繁華的街市上有買也有賣;激烈的賽場上有輸也有贏……你能舉出一些這樣的現(xiàn)象嗎?
(二)教學(xué)新知
1.表示相反意義的量
(1)引入實例
談話:如果沿著剛才的話題繼續(xù)“聊”下去的話,就很自然地走進(jìn)數(shù)學(xué),我們一起來看幾個例子(課件出示)。
①六年級上學(xué)期轉(zhuǎn)來6人,本學(xué)期轉(zhuǎn)走6人。
、趶埌⒁套錾猓路萦1500元,三月份虧損200元。
、叟c標(biāo)準(zhǔn)體重比,小明重了2.5千克,小華輕了1.8千克。
④一個蓄水池夏季水位上升米,冬季水位下降米。
指出:這些相反的詞語和具體的數(shù)量結(jié)合起來,就成了一組組“相反意義的量”。(補(bǔ)充板書:相反意義的量。)
(2)嘗試
怎樣用數(shù)學(xué)方式來表示這些相反意義的量呢?
請同學(xué)們選擇一例,試著寫出表示方法。
……
(3)展示交流
……
初中數(shù)學(xué)試講教案2
相交線
大家好,首先自我介紹一下,我叫xx,來自xx大學(xué)。我今天試講的是有關(guān)相交線的內(nèi)容。說起相交線,其實咱們在座的各位同學(xué)并不陌生,生活中許許多多有關(guān)相交線事例,比如說:包頭市區(qū)里的街道,蓋樓房用的塔吊,還有就是家里的窗戶等等。
要想了解有關(guān)相交線的特征,那么首先由我來想大家介紹一下與相交線相關(guān)的一些角:
鄰補(bǔ)角:兩個角有一條公共邊,他們的另一邊互為反向延長線,具有這種關(guān)系的兩個角互為鄰補(bǔ)角。(注意其中的兩個條件)
特別說明:
1、鄰補(bǔ)角是具有特殊關(guān)系的兩個角,是兩個角互補(bǔ)的特例,如果兩個角互為鄰補(bǔ)角,那么這兩個角一定互補(bǔ),但是互補(bǔ)的兩個角不一定互為鄰補(bǔ)角。
2、一個角的補(bǔ)角很多,但是鄰補(bǔ)角只有兩個。
對頂角:兩個角有一個公共頂點,并且其中一個角的兩邊分別是另一個角的兩邊的反向延長線,具有這種位置關(guān)系的`兩個角為對頂角。(注意其中的兩個條件)
特別說明:
1、對頂角一定相等,且成對出現(xiàn),但是相等的兩個角不一定是對頂角。
垂直:垂直是相交的一種特殊情況,當(dāng)提到線段與線段、線段與射線、線段與直線垂直時,是指他們所在的直線相互垂直。
1、兩條直線垂直是,四個角都是直角,反過來,當(dāng)兩條直線相交時,有一個角是直角,那么這兩條直線就垂直。
垂線:兩條直線相互垂直,其中的一條直線叫做另一條直線的垂線。,他們的交點叫做垂足。
點到直線的距離:直線外的一點到這條直線的垂線段的距離,叫做點到直線的距離。
特別說明:
1、點到直線的距離是指垂線段的長度,而不是垂線段。垂線段是一個幾何圖形。而距離是一個數(shù)量。
2、過直線外的一點有且只有一條直線與已知直線垂直。
證明方法:
反證法:
假設(shè)直線L與直線外一點A,過A有2條直線與L垂直。
作AB⊥L,垂足為B;作AC⊥L,垂足為C。則AB與AC交于A。又∵AB⊥L,AC⊥L∴AB∥AC
“AB與AC交于A”與“AB∥AC”矛盾,所以假設(shè)不成立。即過直線外一點,有且只有一條直線于已知直線垂直。
3、垂線段的性質(zhì):連接直線外的一點與已知直線上各點的所有線段中,垂線段最短。
證明方法
由平行線一點向另一條線做無數(shù)個連線,
垂線的平方=其他連線的平方-垂點與連接點線段的平方根據(jù)直角三角形兩短邊平方和等于斜邊平方得知平行線間垂線段最短“三線八角”的判定
所謂的“三線八角”就是,兩條直線被第三條直線所截,構(gòu)成8個角。這八個角中共有4對同位角,2對同旁內(nèi)角,2對內(nèi)錯角。
同位角的特征:位于截線同一方,被截兩線的同側(cè)。呈“F”型。內(nèi)錯角的特征:位于截線的兩側(cè),被截兩線直接。呈“Z”型
同旁內(nèi)角的特征:位于截線的同一旁,被截兩線之間。呈“U”型
初中數(shù)學(xué)試講教案3
試講人:XXX
知識點:二元一次方程的概念及一般形式,二次項系數(shù)、一次項系數(shù)、常數(shù)項、判別式、一元二次方程解法
重點、難點:二元一次方程四種解法,直接開平方、配方法、公式法、因式分解法
教學(xué)形式:例題演示,加深印象!學(xué)完即用,鞏固記憶!你問我答,有來有往!
1、自我介紹:30s
大家下午好!我叫XXX,20xx年畢業(yè)于暨南大學(xué),學(xué)的行政管理,現(xiàn)在教的是初中數(shù)學(xué),希望能與大家有一個愉快的下午!
2、一元二次方程概念、系數(shù)、根的判別式:8min30s
我們今天的課堂內(nèi)容是復(fù)習(xí)一元二次方程。首先請同學(xué)們看黑板上的這4個等式,請判斷等式是否是一元二次方程,如果是請說出該一元二次方程的二次項系數(shù)、一次項系數(shù)以及常數(shù)項:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必須不等于0(追問為什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以為一元一次方程(追問為什么) 好,同學(xué)們都回答得非常好!那么我們所說的一元二次方程究竟是什么呢?我們從它的名字可以得出它的定義!
一元:只含一個未知數(shù)
二次:含未知數(shù)項的最高次數(shù)為2
方程:一個等式
一元二次方程的一般形式為:ax +bx+c=0 (a ≠0)其中,a 為二次項系數(shù)、b 為一次項系數(shù)、c 為常數(shù)項。記住,a 一定不為0,b 、c 都有可能等于0,一元二次方程的形式多種多樣,所以大家要注意找系數(shù)時先將一元二次方程化為一般式! 至于一個一元二次方程有沒有根怎么判斷,有同學(xué)能告訴老師嗎?(沒有就自己講),好非常好!我們知道Δ是等于2-4ac 的,當(dāng)Δ>0時,方程有2個不相同的實數(shù)根;當(dāng)Δ=0時,方程有兩個相同的實數(shù)根;當(dāng)Δ<0時,方程無實根。 那我們在求方程根之前先利用Δ判斷一下根的情況,如果小于0,那么就直接判斷無解,如果大于等于0,則需要進(jìn)一步求方程根。
3、一元二次方程的解法:20min
那說到求方程的根我們究竟學(xué)了幾種求一元二次方程根的方法呢?我知道同學(xué)們肯定心里有答案,就讓老師為你們一一梳理~
(1)直接開方法
遇到形如x =n的二元一次方程,可以直接使用開方法來求解。若n <0,方程無解;若n=0,則x=0,若n >0, 則x=±n 。同學(xué)們能明白嗎?
(2)配方法
大家覺得直接開平方好不好用?簡不簡單?那大家肯定都想用直接開方法來做題,是吧?當(dāng)然,中考題簡單也不至于這么簡單~但是我們可以通過配方法來將方程往完全平方形式變化。配方法我們通過2道例題來鞏固一下:
簡單的一眼看出來的:x -2x+1=0 (x-1)=0(讓同學(xué)回答)
需要變換的:2x +4x-8=0
步驟:將二次項系數(shù)化為1,左右同除2得:x +2x-4=0
將常數(shù)項移到等號右邊得:x +2x=4
左右同時加上一次項系數(shù)一半的.平方得:x +2x+1=4+1
所以有方程為:(x+1)=5 形似 x=n
然后用直接開平方解得x+1=±5 x=±5-1
大家能聽懂嗎?現(xiàn)在我們一起來做一道練習(xí)題,2min 時間,大家一起報個答案給我!
題目:1/2x-5x-1=0 答案:x=±+5
大家都會做嗎?還需要講解詳細(xì)步驟嗎?
(3)講完了直接開方法、配方法之后我們來講一個萬能的公式法。只要知道abc ,沒有公式法求不出來的解,當(dāng)然啦,除非是無解~
首先,公式法里面的公式大家還記得嗎?
x=(-b ±2-4ac )/2a
這個公式是怎么來的呢?有同學(xué)知道的嗎?就是將一般式配方法得到的x 的表達(dá)式,大家記住,會用就可以了,如果有興趣可以課后試著用配方法進(jìn)行推導(dǎo),也歡迎課后找我探討~這個公式法用起來非常簡單,一找數(shù)、二代入、三化簡。 我們來做一道簡單的例題:
3x -2x-4=0
其中a=3,b=-2,c=-4
帶入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)
化簡得:x1=(1-)/3 x2=(1+)/3
同學(xué)們你們解對了嗎?
使用公式法時要注意的點:系數(shù)的符號要看準(zhǔn)、代入和化簡要細(xì)心,不要馬失前蹄哈~
(4)今天的第四種解方程的方法叫因式分解法。因式分解大家會嗎?好那今天由我來帶大家一起見識一下因式分解的魅力!
簡單來說,因式分解就是將多項式化為式子的乘積形式。
比如說ab+ab 可以化成ab (1+a)的乘積形式。
那么對于二元一次方程,我們的目標(biāo)是要將其化成(mx+a)*(nx+b)=0 這樣就可以解出x=-a/m x=-b/n
我們一起做一個例題鞏固一下:4x +5x+1=0
則可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同學(xué)們都能明白嗎?就是找出公因式,將多項式化為因式的乘積形式從而求解。 練習(xí)題:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、總結(jié):1min
好,復(fù)習(xí)完了二元一次方程我們熟知它的概念。只含有一個未知數(shù)且未知數(shù)項最高次數(shù)為2的等式,叫做二元一次方程。我們還要會找abc 系數(shù),會用Δ=b-4ac 來判別方程實根的情況。還需要熟悉四種方程的解法,這是中考的重點考察內(nèi)容。當(dāng)然,具體用哪一種解題方法就需要結(jié)合具體的題目來選擇了。如果形式簡單可以直接用開平方則直接用開平方,否則首選因式分解法,再者選擇配方法,最后的底線是公式法~當(dāng)然每個人的習(xí)慣不一樣,熟悉的方法也不一樣,同學(xué)們可以自行選擇萬無一失的方法,像老師不到萬不得已絕對不用公式法,哈哈哈哈~好啦,上完這一個復(fù)習(xí)課希望大家都能有收獲!
初中數(shù)學(xué)試講教案4
教學(xué)目標(biāo):
1、理解并掌握三角形中位線的概念、性質(zhì),會利用三角形中位線的性質(zhì)解決有關(guān)問題。
2、經(jīng)歷探索三角形中位線性質(zhì)的過程,讓學(xué)生實現(xiàn)動手實踐、自主探索、合作交流的學(xué)習(xí)過程。
3、通過對問題的探索研究,培養(yǎng)學(xué)生分析問題和解決問題的能力以及思維的.靈活性。
4、培養(yǎng)學(xué)生大膽猜想、合理論證的科學(xué)精神。教學(xué)重點:探索并運(yùn)用三角形中位線的性質(zhì)。
教學(xué)難點:
運(yùn)用轉(zhuǎn)化思想解決有關(guān)問題。教學(xué)方法:創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——應(yīng)用——拓展提高教學(xué)過程:情境創(chuàng)設(shè):測量不可達(dá)兩點距離。
探索活動:
活動一:剪紙拼圖。操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。觀察、猜想:四邊形BCFD是什么四邊形。探索:如何說明四邊形BCFD是平行四邊形?
活動二:探索三角形中位線的性質(zhì)。應(yīng)用練習(xí)及解決情境問題。
例題教學(xué)
操作——猜想——驗證
拓展:數(shù)學(xué)實驗室
小結(jié):作業(yè):P134/習(xí)題3.61、3
【初中數(shù)學(xué)試講教案】相關(guān)文章:
初中數(shù)學(xué)試講教案(通用12篇)07-11
初中政治試講教案10-13
小學(xué)數(shù)學(xué)試講教案(精選20篇)02-16
小學(xué)數(shù)學(xué)試講教案(精選16篇)07-24
小學(xué)數(shù)學(xué)試講教案(精選15篇)03-16
小學(xué)數(shù)學(xué)試講教案6篇01-13