初中數(shù)學(xué)教案(通用20篇)
在教學(xué)工作者開展教學(xué)活動(dòng)前,常常要根據(jù)教學(xué)需要編寫教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編整理的初中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
初中數(shù)學(xué)教案 1
一、課題
27.3 過三點(diǎn)的圓
二、教學(xué)目標(biāo)
1.經(jīng)歷過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓的過程.
2.. 知道過不在同一條直線上的三個(gè)點(diǎn)畫圓的方法
3.了解三角形的外接圓和外心.
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):經(jīng)歷過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓的過程.
難點(diǎn):知道過不在同一條直線上的三個(gè)點(diǎn)畫圓的方法.
四、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
五、教學(xué)方法
學(xué)生自己探索
六、教學(xué)過程設(shè)計(jì)
(一)、新授
1.過已知一個(gè)點(diǎn)A畫圓,并考慮這樣的.圓有多少個(gè)?
2.過已知兩個(gè)點(diǎn)A、B畫圓,并考慮這樣的圓有多少個(gè)?
3.過已知三個(gè)點(diǎn)A、B、C畫圓,并考慮這樣的圓有多少個(gè)?
讓學(xué)生以小組為單位,進(jìn)行探索、思考、交流后,小組選派代表向全班學(xué)生展示本小組的探索成果,在展示后,接受其他學(xué)生的質(zhì)疑.
得出結(jié)論:過一點(diǎn)可以畫無數(shù)個(gè)圓;過兩點(diǎn)也可以畫無數(shù)個(gè)圓;這些圓的圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上;經(jīng)過不在同一直線上的三個(gè)點(diǎn)可以畫一個(gè)圓,并且這樣的圓只有一個(gè).
不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.
給出三角形外接圓的概念:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓,這個(gè)圓叫作三角形的外接圓,外接圓的圓心叫做三角形的外心.
例:畫已知三角形的外接圓.
讓學(xué)生探索課本第15頁習(xí)題1.
一起探究
八年級(jí)(一)班的學(xué)生為老區(qū)的小朋友捐款500元,準(zhǔn)備為他們購(gòu)買甲、乙 兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?
分析:帶領(lǐng)學(xué)生完成課本第13頁的表格,并完成2、3 問題,使學(xué)生清楚通過列表可以更好的分析題目,對(duì)于情景較為復(fù)雜的問題情景可采用這種分析方法解題.另外通過此題,使學(xué)生認(rèn)識(shí)到:在應(yīng)不等式解決實(shí)際問題時(shí),當(dāng)求出不等式的解集后,還要根據(jù)問題的實(shí)際意義確定問題的解.
。ǘ、小結(jié)
七、練習(xí)設(shè)計(jì)
P15習(xí)題2、3
八、教學(xué)后記
后備練習(xí):
1. 已知一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的外接圓面積等于 .
2. 如圖,有A, ,C三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )
A.在AC,BC兩邊高線的交點(diǎn)處
B.在AC,BC兩邊中線的交點(diǎn)處
C.在AC,BC兩邊垂直平分線的交點(diǎn)處
D.在A,B兩內(nèi)角平分線的交點(diǎn)處
初中數(shù)學(xué)教案 2
教學(xué)目的
1、使學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,掌握實(shí)數(shù)的分類,會(huì)準(zhǔn)確判斷一個(gè)數(shù)是有理數(shù)還是無理數(shù)。
2、使學(xué)生能了解實(shí)數(shù)絕對(duì)值的意義。
3、使學(xué)生能了解數(shù)軸上的點(diǎn)具有一一對(duì)應(yīng)關(guān)系。
4、由實(shí)數(shù)的分類,滲透數(shù)學(xué)分類的思想。
5、由實(shí)數(shù)與數(shù)軸的一一對(duì)應(yīng),滲透數(shù)形結(jié)合的思想。
教學(xué)分析
重點(diǎn):無理數(shù)及實(shí)數(shù)的概念。
難點(diǎn):有理數(shù)與無理數(shù)的區(qū)別,點(diǎn)與數(shù)的一一對(duì)應(yīng)。
教學(xué)過程
一、復(fù)習(xí)
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。
判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號(hào)的數(shù)都是無理數(shù)。
2、實(shí)數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實(shí)數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實(shí)數(shù)的相反數(shù):
5、實(shí)數(shù)的絕對(duì)值:
6、實(shí)數(shù)的運(yùn)算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
。1)任何實(shí)數(shù)的偶次冪是正實(shí)數(shù)。( )
。2)在實(shí)數(shù)范圍內(nèi),若| x|=|y|則x=y。( )
。3)0是最小的`實(shí)數(shù)。( )
(4)0是絕對(duì)值最小的實(shí)數(shù)。( )
解:略
三、練習(xí)
P148 練習(xí):3、4、5、6。
四、小結(jié)
1、今天我們學(xué)習(xí)了實(shí)數(shù),請(qǐng)同學(xué)們首先要清楚,實(shí)數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對(duì)實(shí)數(shù)兩種不同的分類要清楚。
2、要對(duì)應(yīng)有理數(shù)的相反數(shù)與絕對(duì)值定義及運(yùn)算律和運(yùn)算性質(zhì),來理解在實(shí)數(shù)中的運(yùn)用。
五、作業(yè)
1、P150 習(xí)題A:3。
2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。
初中數(shù)學(xué)教案 3
教學(xué)目標(biāo):
(一)知識(shí)與技能
理解單項(xiàng)式及單項(xiàng)式系數(shù)、次數(shù)的概念;能準(zhǔn)確迅速地確定一個(gè)單項(xiàng)式的系數(shù)和次數(shù);會(huì)用含字母的式子表示實(shí)際問題中的數(shù)量關(guān)系。
(二)過程與方法
1.在經(jīng)歷用字母表示數(shù)量關(guān)系的過程中,發(fā)展符號(hào)感;
2. 通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識(shí)和合作交流能力
(三)情感態(tài)度價(jià)值觀
1.通過豐富多彩的現(xiàn)實(shí)情景,讓學(xué)生經(jīng)歷從具體問題中抽象出數(shù)量關(guān)系,在解決問題中了解數(shù)學(xué)的價(jià)值,增長(zhǎng)“用數(shù)學(xué)”的信心.
2.通過用含字母的式子描述現(xiàn)實(shí)世界中的數(shù)量關(guān)系,認(rèn)識(shí)到它是解決實(shí)際問題的重要數(shù)學(xué)工具之一。
教學(xué)重、難點(diǎn):
重點(diǎn):?jiǎn)雾?xiàng)式及單項(xiàng)式系數(shù)、次數(shù)的概念。
難點(diǎn):?jiǎn)雾?xiàng)式次數(shù)的概念;單項(xiàng)式的書寫格式及注意點(diǎn)。
教學(xué)方法:
引導(dǎo)——探究式
在感性材料的基礎(chǔ)上,學(xué)生自主探究現(xiàn)實(shí)情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個(gè)體的共同點(diǎn),教師引導(dǎo)學(xué)生共同抽象、概括單項(xiàng)式及相關(guān)的概念.
教具準(zhǔn)備:
多媒體課件、小黑板.
教學(xué)過程:
一、 創(chuàng)設(shè)情境,引入新課
出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向?qū)W生介紹青藏鐵路所創(chuàng)造的歷史之最。
情境問題:
青藏鐵路西線上,在格爾木到拉薩之間有一段很長(zhǎng)的凍土地段。列車在凍土地段的行駛速度是100千米/時(shí),在非凍土地段的行駛速度可以達(dá)到120千米/時(shí),請(qǐng)根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時(shí),2小時(shí)能行駛多少千米?3小時(shí)呢?t小時(shí)呢?
設(shè)計(jì)意圖:從學(xué)生熟悉的情境出發(fā),創(chuàng)設(shè)情境,讓學(xué)生感受青藏鐵路的偉大成就,激發(fā)
愛國(guó)主義情感,得到一次情感教育。
解:根據(jù)路程、速度、時(shí)間之間的關(guān)系:路程=速度×?xí)r間
2小時(shí)行駛的路程是:100×2=200(千米)
3小時(shí)行駛的路程是:100×3=300(千米)
t小時(shí)行駛的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出現(xiàn)乘號(hào),通常將乘號(hào)寫作“ · ”或省略不寫。
如:100×a可以寫成100a或100a。
代數(shù)式:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。
代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系,本節(jié)我們就來學(xué)習(xí)最基本也是最重要的一類代數(shù)式整式。
設(shè)計(jì)意圖:從學(xué)生已有的數(shù)學(xué)經(jīng)驗(yàn):路程=速度×?xí)r間出發(fā),建立新舊知識(shí)之間的聯(lián)系
讓學(xué)生歷一個(gè)從一般到特殊再到一般的認(rèn)識(shí)過程,發(fā)展學(xué)生的認(rèn)知觀念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(獨(dú)立完成),并觀察列出的式子有什么共同特點(diǎn)(小組可交流討論)。
1、邊長(zhǎng)為a的正方體的表面積是__,體積是__.
2、鉛筆的單價(jià)是x元,圓珠筆的單價(jià)是鉛筆的2.5倍,則圓珠筆的單價(jià)是___元。
3、一輛汽車的速度是v千米∕小時(shí),它t小時(shí)行駛的路程為__千米。
4、數(shù)n的相反數(shù)是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它們有什么共同的特點(diǎn)?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
單項(xiàng)式:數(shù)與字母、字母與字母的乘積。
注意:?jiǎn)为?dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。
設(shè)計(jì)意圖:從熟悉的實(shí)際背景出發(fā),充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進(jìn)行自主學(xué)習(xí)和合作交流,獲得數(shù)學(xué)猜想和數(shù)學(xué)經(jīng)驗(yàn),滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。
火眼金睛
下列各代數(shù)式中哪些是單項(xiàng)式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)3a+2b (6)xy2
設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)不同形式的單項(xiàng)式的直觀認(rèn)識(shí)。
解剖單項(xiàng)式
系數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù)。
如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的系數(shù)是 。
次數(shù):一個(gè)單項(xiàng)式中的所有字母的指數(shù)的和。
如:-3x的次數(shù)是 ,ab的次數(shù)是 。
小試身手
單項(xiàng)式 2a 2 -1.2h xy2 -t2 -32x2y
系數(shù)
次數(shù)
設(shè)計(jì)意圖:了解學(xué)生對(duì)單項(xiàng)式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進(jìn)一步鞏固概念。
單項(xiàng)式的注意點(diǎn):
(1)數(shù)與字母相乘時(shí),數(shù)應(yīng)寫在字母的___,且乘號(hào)可_________;
(2)帶分?jǐn)?shù)作為系數(shù)時(shí),應(yīng)改寫成_______的形式;
(3)式子中若出現(xiàn)相除時(shí),應(yīng)把除號(hào)寫成____的形式;
(4)把“1”或“-1”作為項(xiàng)的系數(shù)時(shí),“1”可以__不寫。
行家看門道
、1x ②-1x
③a×3 ④a÷2
、 ⑥m的系數(shù)為1,次數(shù)為0
、 的系數(shù)為2,次數(shù)為2
設(shè)計(jì)意圖:?jiǎn)雾?xiàng)式的書寫和表示有其特有的格式和注意點(diǎn),通過以上兩個(gè)題目讓學(xué)生進(jìn)一步明確注意點(diǎn)。
三、例題講解,鞏固新知
例1:用單項(xiàng)式填空,并指出它們的系數(shù)和次數(shù):
(1)每包書有12冊(cè),n包書有 冊(cè);
(2)底邊長(zhǎng)為a,高為h的三角形的面積 ;
(3)一個(gè)長(zhǎng)方體的長(zhǎng)和寬都是a,高是h,它的體積是 ;
(4)一臺(tái)電視機(jī)原價(jià)a元,現(xiàn)按原價(jià)的9折出售,這臺(tái)電視機(jī)現(xiàn)在的售價(jià)
為 元;
(5)一個(gè)長(zhǎng)方形的長(zhǎng)0.9,寬是a,這個(gè)長(zhǎng)方形的面積是 .
解:(1)12n,它的系數(shù)是12,次數(shù)是1
(2) ,它的系數(shù)是 , 次數(shù)是2;
(3)a2h,它的系數(shù)是1,次數(shù)是3;
(4)0.9a,它的系數(shù)是0.9,次數(shù)是1;
(5)0.9a,它的系數(shù)是0.9,次數(shù)是1。
設(shè)計(jì)意圖:學(xué)生能用單項(xiàng)式表示簡(jiǎn)單的實(shí)際問題中的數(shù)量關(guān)系,并進(jìn)一步鞏固單項(xiàng)式的系數(shù)、次數(shù)的概念。
試一試
你還能賦予0.9a一個(gè)含義嗎?
設(shè)計(jì)意圖:同一個(gè)式子可以表示不同的含義,通過這個(gè)例子讓學(xué)生進(jìn)一步體會(huì)式子更具有一般性,而且發(fā)散學(xué)生思維。
大膽嘗試
寫出一個(gè)單項(xiàng)式,使它的系數(shù)是2,次數(shù)是3.
設(shè)計(jì)意圖:充分發(fā)揮學(xué)生的想象力,讓每一個(gè)學(xué)生都有獲得成功的體驗(yàn),為不同程度的學(xué)生一個(gè)展示自我的機(jī)會(huì),激發(fā)他們的學(xué)習(xí)興趣。
四、拓展提高
嘗試應(yīng)用
用單項(xiàng)式填空,并指出它們的系數(shù)和次數(shù):
(1)全校學(xué)生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;
(2)一輛長(zhǎng)途汽車從楊柳村出發(fā),3小時(shí)后到達(dá)相距s千米的溪河鎮(zhèn),這輛長(zhǎng)途汽車的平均速度是 ;
(3)產(chǎn)量由m千克增長(zhǎng)10%,就達(dá)到 千克;
設(shè)計(jì)意圖:讓學(xué)生感受單項(xiàng)式在實(shí)際生活中的應(yīng)用,進(jìn)一步掌握單項(xiàng)式及單項(xiàng)式系數(shù)、次數(shù)的概念。
能力提升
1、已知-xay是關(guān)于x、y的`三次單項(xiàng)式,那么a= ,b= .
2、若-ax2yb+1是關(guān)于x、y的五次單項(xiàng)式,且系數(shù)為-3,則a= ,b= .
設(shè)計(jì)意圖:照顧學(xué)有余力的學(xué)生,拓展學(xué)生思維,讓學(xué)生體會(huì)跳一跳、摘桃子的樂趣。
五、小結(jié):
本節(jié)課你感受到了嗎?
生活中處處有數(shù)學(xué)
本節(jié)課我們學(xué)了什么?你能說說你的收獲嗎?
1、單項(xiàng)式的概念: 數(shù)與字母、字母與字母的乘積。
2、單項(xiàng)式的系數(shù)、次數(shù)的概念。
系數(shù):?jiǎn)雾?xiàng)中的數(shù)字因數(shù);
次數(shù):?jiǎn)雾?xiàng)中所有字母的指數(shù)和。
3、會(huì)用單項(xiàng)式表示實(shí)際問題中的數(shù)量關(guān)系,注意列式時(shí)式子要規(guī)范書寫。
設(shè)計(jì)意圖:通過回顧和反思,讓學(xué)生看到自己的進(jìn)步,激勵(lì)學(xué)生,使學(xué)生相信自己在今后的學(xué)習(xí)中不斷進(jìn)步,不斷積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),促進(jìn)學(xué)生形成良好的心理品質(zhì)。
結(jié)束寄語
悟性的高低取決于有無悟“心”,其實(shí),人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!
設(shè)計(jì)意圖:這是對(duì)學(xué)生的激勵(lì)也是對(duì)學(xué)生的一種期盼,可以增進(jìn)師生間的情感交流。
六、板書設(shè)計(jì)
2.1 整式
單項(xiàng)式概念 探究 例1 多
單項(xiàng)式的系數(shù)概念 觀察交流 嘗試應(yīng)用 媒
單項(xiàng)式的次數(shù)概念 能力提升 體
七、作業(yè):
1.作業(yè)本(必做)。
2. 請(qǐng)下面圖片設(shè)計(jì)一個(gè)故事情境,要求其中包含的數(shù)量關(guān)系能夠用單項(xiàng)式表示,并且指出它們的系數(shù)和次數(shù)(選做)。
設(shè)計(jì)意圖:布置分層作業(yè),既讓學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。讓學(xué)生自行編題是一種創(chuàng)造性的思維活動(dòng),它可以改變一味由教師出題的形式,活躍學(xué)生思維,使學(xué)生能夠透徹理解知識(shí),同時(shí)培養(yǎng)同學(xué)之間的競(jìng)爭(zhēng)意識(shí)。
八、設(shè)計(jì)理念:
本節(jié)課是研究整式的起始課,它是進(jìn)一步學(xué)習(xí)多項(xiàng)式的基礎(chǔ),因此對(duì)單項(xiàng)式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。為突出重點(diǎn),突破難點(diǎn),教學(xué)中要加強(qiáng)直觀性,即為學(xué)生提供足夠的感知材料,豐富學(xué)生的感性認(rèn)識(shí),幫助學(xué)生認(rèn)識(shí)概念,同時(shí)也要注重分析,亦即在剖析單項(xiàng)式結(jié)構(gòu)時(shí),借助反例練習(xí),抓住概念易混淆處和判斷易出錯(cuò)處,強(qiáng)化認(rèn)識(shí),幫助學(xué)生理解單項(xiàng)式系數(shù)、次數(shù),為進(jìn)一步學(xué)習(xí)新知做好鋪墊。
針對(duì)七年級(jí)學(xué)生學(xué)習(xí)熱情高,但觀察、分析、認(rèn)識(shí)問題能力較弱的特點(diǎn),教學(xué)時(shí)將提供大量感性材料,以啟發(fā)引導(dǎo)為主,同時(shí)輔之以討論、練習(xí)、合作交流等學(xué)習(xí)活動(dòng),達(dá)到掌握知識(shí)的目的,并逐步培養(yǎng)起學(xué)生觀察、分析、抽象、概括的能力,同時(shí)注重培養(yǎng)學(xué)生由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)同類項(xiàng)打下堅(jiān)實(shí)的基礎(chǔ)。
初中數(shù)學(xué)教案 4
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過程,在此過程中加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過驗(yàn)證過程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識(shí)之間內(nèi)在聯(lián)系,每一部分知識(shí)并不是孤立的。
3.通過豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問題與合作交流方法與經(jīng)驗(yàn)。
4.通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動(dòng)增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn)
1.通過綜合運(yùn)用已有知識(shí)解決問題的過程,加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。
2.通過拼圖驗(yàn)證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗(yàn)。
難點(diǎn)
利用數(shù)形結(jié)合的方法驗(yàn)證公式
教學(xué)方法
動(dòng)手操作,合作探究課型新授課教具投影儀
教師活動(dòng)學(xué)生活動(dòng)
情景設(shè)置:
你已知道的'關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個(gè)圖形拼成一個(gè)新的圖形,再通過圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫氖阶印C绹(guó)第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長(zhǎng)分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長(zhǎng)方形,計(jì)算它的面積,并寫出相應(yīng)的等式;
(2)任意寫出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2
試用拼一個(gè)長(zhǎng)方形的方法,把這個(gè)二次三項(xiàng)式因式分解。
這個(gè)問題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過程中進(jìn)行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
。ń處煈(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對(duì)學(xué)生所說的進(jìn)行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
。╝+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對(duì)于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)
第95頁第3題
初中數(shù)學(xué)教案 5
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):
①,在實(shí)踐操作過程中,逐步探索圖形之間的平移關(guān)系;
、,對(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過對(duì)“基本圖案”的平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):圖形連續(xù)變化的特點(diǎn);
難點(diǎn):圖形的'劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計(jì):
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個(gè)圖案有什么特點(diǎn)?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個(gè)正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺(tái)上給大家講解。
氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
初中數(shù)學(xué)教案 6
教學(xué)目標(biāo)
1.使學(xué)生正確理解的意義,掌握的三要素;
2.使學(xué)生學(xué)會(huì)由上的已知點(diǎn)說出它所表示的數(shù),能將有理數(shù)用上的點(diǎn)表示出來;
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點(diǎn)表示有理數(shù).
難點(diǎn):正確理解有理數(shù)與上點(diǎn)的對(duì)應(yīng)關(guān)系.
課堂教學(xué)過程 設(shè)計(jì)
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.小學(xué)里曾用“射線”上的點(diǎn)來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認(rèn)為把“射線”做怎樣的改動(dòng),才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的`內(nèi)容——.
二、講授新課
讓學(xué)生觀察掛圖——放大的溫度計(jì),同時(shí)教師給予語言指導(dǎo):利用溫度計(jì)可以測(cè)量溫度,在溫度計(jì)上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計(jì)的液面的不同位置就可以讀出不同的數(shù),從而得到所測(cè)的溫度.在0上10個(gè)刻度,表示10℃;在0下5個(gè)刻度,表示-5℃.
與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點(diǎn)作為原點(diǎn)(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點(diǎn)表示0(相當(dāng)于溫度計(jì)上的0℃);
2.規(guī)定直線上從原點(diǎn)向右為正方向(箭頭所指的方向),那么從原點(diǎn)向左為負(fù)方向(相當(dāng)于溫度計(jì)上0℃以上為正,0℃以下為負(fù));
3.選取適當(dāng)?shù)拈L(zhǎng)度作為單位長(zhǎng)度,在直線上,從原點(diǎn)向右,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為1,2,3,…從原點(diǎn)向左,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個(gè)數(shù))
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做.
進(jìn)而提問學(xué)生:在上,已知一點(diǎn)P表示數(shù)-5,如果上的原點(diǎn)不選在原來位置,而改選在另一位置,那么P對(duì)應(yīng)的數(shù)是否還是-5?如果單位長(zhǎng)度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點(diǎn)、正方向和單位長(zhǎng)度,缺一不可.
三、運(yùn)用舉例 變式練習(xí)
例1 畫一個(gè),并在上畫出表示下列各數(shù)的點(diǎn):
例2 指出上A,B,C,D,E各點(diǎn)分別表示什么數(shù).
課堂練習(xí)
示出來.
2.說出下面上A,B,C,D,O,M各點(diǎn)表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,零用原點(diǎn)表示.
四、小結(jié)
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點(diǎn)建立了對(duì)應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點(diǎn)來表示,但是反過來不成立,即上的點(diǎn)并不是都表示有理數(shù),至于上的哪些點(diǎn)不能表示有理數(shù),這個(gè)問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點(diǎn).
(2)A,H,D,E,O各點(diǎn)分別表示什么數(shù)?
2.在下面上,A,B,C,D各點(diǎn)分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號(hào)內(nèi)的一組數(shù)的點(diǎn):
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學(xué)教案 7
教學(xué)目標(biāo)
1.知識(shí)與技能
能運(yùn)用運(yùn)算律探究去括號(hào)法則,并且利用去括號(hào)法則將整式化簡(jiǎn).
2.過程與方法
經(jīng)歷類比帶有括號(hào)的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號(hào)時(shí)的符號(hào)變化的規(guī)律,歸納出去括號(hào)法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
3.情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動(dòng)探究、合作交流的意識(shí),嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):去括號(hào)法則,準(zhǔn)確應(yīng)用法則將整式化簡(jiǎn).
2.難點(diǎn):括號(hào)前面是“-”號(hào)去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)變號(hào)容易產(chǎn)生錯(cuò)誤.
3.關(guān)鍵:準(zhǔn)確理解去括號(hào)法則.
教具準(zhǔn)備
投影儀.
教學(xué)過程
一、新授
利用合并同類項(xiàng)可以把一個(gè)多項(xiàng)式化簡(jiǎn),在實(shí)際問題中,往往列出的式子含有括號(hào),那么該怎樣化簡(jiǎn)呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時(shí),那么它通過非凍土地段的.時(shí)間為(t-0.5)小時(shí),于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長(zhǎng)為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號(hào),它們應(yīng)如何化簡(jiǎn)?
思路點(diǎn)撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運(yùn)算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:
利用分配律,可以去括號(hào),合并同類項(xiàng),得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡(jiǎn)帶有括號(hào)的整式,首先應(yīng)先去括號(hào).
上面兩式去括號(hào)部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號(hào)時(shí)符號(hào)變化的規(guī)律嗎?
思路點(diǎn)撥:鼓勵(lì)學(xué)生通過觀察,試用自己的語言敘述去括號(hào)法則,然后教師板書(或用屏幕)展示:
如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同;
如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號(hào)去掉,得:
+(x-3)=x-3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都沒有變號(hào))
-(x-3)=-x+3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都改變了符號(hào))
去括號(hào)規(guī)律要準(zhǔn)確理解,去括號(hào)應(yīng)對(duì)括號(hào)的每一項(xiàng)的符號(hào)都予考慮,做到要變都變;要不變,則誰也不變;另外,括號(hào)內(nèi)原有幾項(xiàng)去掉括號(hào)后仍有幾項(xiàng).
二、范例學(xué)習(xí)
例1.化簡(jiǎn)下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點(diǎn)撥:講解時(shí),先讓學(xué)生判定是哪種類型的去括號(hào),去括號(hào)后,要不要變號(hào),括號(hào)內(nèi)的每一項(xiàng)原來是什么符號(hào)?去括號(hào)時(shí),要同時(shí)去掉括號(hào)前的符號(hào).為了防止錯(cuò)誤,題(2)中-3(a2-2b),先把3乘到括號(hào)內(nèi),然后再去括號(hào).
解答過程按課本,可由學(xué)生口述,教師板書.
例2.兩船從同一港口同時(shí)出發(fā)反向而行,甲船順?biāo),乙船逆水?兩船在靜水中的速度都是50千米/時(shí),水流速度是a千米/時(shí).
(1)2小時(shí)后兩船相距多遠(yuǎn)?
(2)2小時(shí)后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.
思路點(diǎn)撥:根據(jù)船順?biāo)叫械乃俣?船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時(shí),乙船速度為(50-a)千米/時(shí),2小時(shí)后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時(shí)出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號(hào)時(shí)強(qiáng)調(diào):括號(hào)內(nèi)每一項(xiàng)都要乘以2,括號(hào)前是負(fù)因數(shù)時(shí),去掉括號(hào)后,括號(hào)內(nèi)每一項(xiàng)都要變號(hào).為了防止出錯(cuò),可以先用分配律將數(shù)字2與括號(hào)內(nèi)的各項(xiàng)相乘,然后再去括號(hào),熟練后,再省去這一步,直接去括號(hào).
三、鞏固練習(xí)
1.課本第68頁練習(xí)1、2題.
2.計(jì)算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點(diǎn)撥:一般地,先去小括號(hào),再去中括號(hào).
四、課堂小結(jié)
去括號(hào)是代數(shù)式變形中的一種常用方法,去括號(hào)時(shí),特別是括號(hào)前面是“-”號(hào)時(shí),括號(hào)連同括號(hào)前面的“-”號(hào)去掉,括號(hào)里的各項(xiàng)都改變符號(hào).去括號(hào)規(guī)律可以簡(jiǎn)單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號(hào)前帶有數(shù)字因數(shù)時(shí),這個(gè)數(shù)字要乘以括號(hào)內(nèi)的每一項(xiàng),切勿漏乘某些項(xiàng).
五、作業(yè)布置
1.課本第71頁習(xí)題2.2第2、3、5、8題.
2.選用課時(shí)作業(yè)設(shè)計(jì).
初中數(shù)學(xué)教案 8
知識(shí)技能
會(huì)通過“移項(xiàng)”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會(huì)一元一次方程是刻畫實(shí)際問題的有效數(shù)學(xué)模型。進(jìn)一步發(fā)展符號(hào)意識(shí)。
2.通過一元一次方程的學(xué)習(xí),體會(huì)方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識(shí)。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實(shí)驗(yàn)計(jì)算、交流等活動(dòng),激發(fā)求知欲,體驗(yàn)探究發(fā)現(xiàn)的快樂。
教學(xué)重點(diǎn)
建立方程解決實(shí)際問題,會(huì)通過移項(xiàng)解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點(diǎn)
分析實(shí)際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動(dòng)一 知識(shí)回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時(shí),方程的解一般化成什么形式?這些題你采用了那些變形或運(yùn)算?
教師:前面我們學(xué)習(xí)了簡(jiǎn)單的一元一次方程的解法,下面請(qǐng)大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨(dú)立完成,板演2、4題,板演同學(xué)講解所用到的變形或運(yùn)算,共同講評(píng)。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨(dú)立思考、回答交流。
本次活動(dòng)中教師關(guān)注:
。1)學(xué)生能否準(zhǔn)確理解運(yùn)用等式性質(zhì)和合并同列項(xiàng)求解方程。
。2)學(xué)生對(duì)解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個(gè)環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項(xiàng)對(duì)方程進(jìn)行變形,再現(xiàn)等式兩邊同時(shí)加上(或減去)同一個(gè)數(shù)、兩邊同時(shí)乘以(除以,不為0)同一個(gè)數(shù)、合并同類項(xiàng)等運(yùn)算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動(dòng)二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個(gè)問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗(yàn)?zāi)愦蛩阍趺醋觯?/p>
。▽W(xué)生嘗試提問)
學(xué)生:讀題,審題,獨(dú)立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨(dú)立回答)
2.設(shè)未知數(shù):設(shè)這個(gè)班有x名學(xué)生。
3.列代數(shù)式:x參與運(yùn)算,探索運(yùn)算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個(gè)定值,表示它的兩個(gè)等式相等.(學(xué)生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結(jié)提問:通過列方程解決實(shí)際問題分析時(shí),要經(jīng)歷那些步驟?書寫時(shí)呢?
教師提問1:這個(gè)方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(xiàng)(3x與4x)和不含字母的常數(shù)項(xiàng)(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的`右邊沒有含x的項(xiàng),等號(hào)兩邊同減去4x,為使方程的左邊沒有常數(shù)項(xiàng),等號(hào)兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項(xiàng)”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項(xiàng),含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個(gè)方程,我們經(jīng)歷了那些步驟?列方程時(shí)找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
(1)學(xué)生對(duì)列方程解決實(shí)際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動(dòng)中,體驗(yàn)探究發(fā)現(xiàn)成功的快樂。
活動(dòng)三 解法運(yùn)用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個(gè)方程時(shí),第一步我們先干什么?
學(xué)生講解,獨(dú)立完成,板演。
提問:“移項(xiàng)”是注意什么?
學(xué)生:變號(hào)。
教師關(guān)注:學(xué)生“移項(xiàng)”時(shí)是否能夠注意變號(hào)。
通過這個(gè)例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗(yàn)“移項(xiàng)”這種變形在解方程中的作用,規(guī)范解題步驟。
活動(dòng)四 鞏固提高
1.第91頁練習(xí)(1)(2)
2.某貨運(yùn)公司要用若干輛汽車運(yùn)送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運(yùn)送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時(shí)走6千米,則比規(guī)定時(shí)間遲到1小時(shí);若每小時(shí)走8千米,則比規(guī)定時(shí)間早到0.5小時(shí)。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨(dú)立完成,用實(shí)物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計(jì)算中可能出現(xiàn)的錯(cuò)誤。
2.x系數(shù)為分?jǐn)?shù)時(shí),可用乘的辦法,化系數(shù)為1。
3.用實(shí)物投影展示學(xué)困生的完成情況,進(jìn)行評(píng)價(jià)、鼓勵(lì)。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對(duì)解方程步驟的掌握情況和可能出現(xiàn)的計(jì)算錯(cuò)誤。
2、3題的重點(diǎn)是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗(yàn)解決實(shí)際問題,達(dá)到鞏固提高的目的。
活動(dòng)五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點(diǎn)利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識(shí)進(jìn)行小結(jié)。
學(xué)生進(jìn)行總結(jié)歸納、回答交流,相互完善補(bǔ)充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點(diǎn)內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對(duì)本節(jié)所學(xué)知識(shí)進(jìn)行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運(yùn)用。
布置作業(yè):
第93頁第3題
初中數(shù)學(xué)教案 9
一、教學(xué)目標(biāo)
1.使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;
2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。
二、教學(xué)重點(diǎn)和難點(diǎn)
一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟。
三、課堂教學(xué)過程設(shè)計(jì)
。ㄒ唬⿵膶W(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題。
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
。ㄊ紫,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數(shù)為3。
。ㄆ浯,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4。
解之,得x=3。
答:某數(shù)為3。
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一。
我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。
本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
。ǘ⿴熒餐治觥⒀芯恳辉淮畏匠探夂(jiǎn)單應(yīng)用題的方法和步驟
例2 某面粉倉(cāng)庫存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉(cāng)庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)
3.若設(shè)原來面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來有50 000千克面粉。
此時(shí),讓學(xué)生討論:本題的相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?
。ㄟ有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)
教師應(yīng)指出:
。1)這兩種相等關(guān)系的表達(dá)形式與“原來重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,可以任意選擇其中的`一個(gè)相等關(guān)系來列方程;
。2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。
依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
。1)仔細(xì)審題,透徹理解題意。即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);
。3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;
。4)求出所列方程的解;
(5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。
例3 (投影)初一2班第一小組同學(xué)去蘋果園參加勞動(dòng),休息時(shí)工人師傅摘蘋果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問第一小組有多少學(xué)生,共摘了多少個(gè)蘋果?
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書寫格式。)
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個(gè)方程:2x=10,
所以x=5。
其蘋果數(shù)為3× 5+9=24。
答:第一小組有5名同學(xué),共摘蘋果24個(gè)。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)
。ㄈ┱n堂練習(xí)
1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習(xí)本每本多少元?
2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3 802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
。ㄋ模⿴熒餐〗Y(jié)
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
。1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書寫答案.其中第三步是關(guān)鍵;
。2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
。ㄎ澹┳鳂I(yè)
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
3.某廠去年10月份生產(chǎn)電視機(jī)20xx臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái)。這家工廠前年10月生產(chǎn)電視機(jī)多少臺(tái)?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?
5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù)撸坏泉?jiǎng)每人200元,二等獎(jiǎng)每人50元。求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。
初中數(shù)學(xué)教案 10
一、教學(xué)目標(biāo)
【知識(shí)與技能】
了解數(shù)軸的概念,能用數(shù)軸上的點(diǎn)準(zhǔn)確地表示有理數(shù)。
【過程與方法】
通過觀察與實(shí)際操作,理解有理數(shù)與數(shù)軸上的點(diǎn)的對(duì)應(yīng)關(guān)系,體會(huì)數(shù)形結(jié)合的思想。
【情感、態(tài)度與價(jià)值觀】
在數(shù)與形結(jié)合的過程中,體會(huì)數(shù)學(xué)學(xué)習(xí)的樂趣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
數(shù)軸的三要素,用數(shù)軸上的點(diǎn)表示有理數(shù)。
【教學(xué)難點(diǎn)】
數(shù)形結(jié)合的思想方法。
三、教學(xué)過程
。ㄒ唬┮胄抡n
提出問題:通過實(shí)例溫度計(jì)上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計(jì)一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。
(二)探索新知
學(xué)生活動(dòng):小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的'關(guān)系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對(duì)位置呢?
學(xué)生活動(dòng):畫圖表示后提問。
提問2:“0”代表什么?數(shù)的符號(hào)的實(shí)際意義是什么?對(duì)照體溫計(jì)進(jìn)行解答。
教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個(gè)點(diǎn)表示數(shù)0,代表原點(diǎn);通常規(guī)定直線上向右(或上)為正方向,從原點(diǎn)向左(或下)為負(fù)方向;選取合適的長(zhǎng)度為單位長(zhǎng)度。
提問3:你是如何理解數(shù)軸三要素的?
師生共同總結(jié):“原點(diǎn)”是數(shù)軸的“基準(zhǔn)”,表示0,是表示正數(shù)和負(fù)數(shù)的分界點(diǎn),正方向是人為規(guī)定的,要依據(jù)實(shí)際問題選取合適的單位長(zhǎng)度。
。ㄈ┱n堂練習(xí)
如圖,寫出數(shù)軸上點(diǎn)A,B,C,D,E表示的數(shù)。
。ㄋ模┬〗Y(jié)作業(yè)
提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。
課后作業(yè):
課后練習(xí)題第二題;思考:到原點(diǎn)距離相等的兩個(gè)點(diǎn)有什么特點(diǎn)?
初中數(shù)學(xué)教案 11
三維目標(biāo)
一、知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.
二、過程與方法
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.
三、情感態(tài)度與價(jià)值觀
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動(dòng)1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值.
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的'反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動(dòng)2
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;
、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;
、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.
因此,撬動(dòng)石頭至少需要400牛頓的力.
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時(shí),
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米.
生:也可用不等式來解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時(shí).
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:
用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長(zhǎng)越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.
活動(dòng)3
問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計(jì)意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動(dòng)4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.
設(shè)計(jì)意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評(píng).
師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.
四、課時(shí)小結(jié)
活動(dòng)5
你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計(jì)意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書設(shè)計(jì)
17.2 實(shí)際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?
設(shè)阻力為F1,阻力臂長(zhǎng)為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減小.
活動(dòng)與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長(zhǎng)不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長(zhǎng)不超過40m,則它的寬應(yīng)大于等于10m。
初中數(shù)學(xué)教案 12
教學(xué)目標(biāo)
1、認(rèn)識(shí)度、分、秒,會(huì)進(jìn)行度、分、秒間單位互化及角的和、差、倍、分計(jì)算。
2、通過度、分、秒間的互化及角度的簡(jiǎn)單運(yùn)算,經(jīng)歷利用已有知識(shí)解決新問題的探索過程,培養(yǎng)學(xué)生的數(shù)感和對(duì)數(shù)學(xué)活動(dòng)的興趣。
3、在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點(diǎn),尊重和理解他人的見解,從而在交流中獲益。
教學(xué)重點(diǎn)
度、分、秒間單位互化及角的和、差、倍、分計(jì)算。
知識(shí)難點(diǎn)
度、分、秒間單位互化及角的和、差、倍、分計(jì)算。
教學(xué)準(zhǔn)備
量角器、三角尺。
教學(xué)過程
(師生活動(dòng))設(shè)計(jì)理念
復(fù)習(xí)
任意畫一個(gè)銳角和鈍角,用字母分別表示這兩個(gè)角,用量角器分別理出這兩個(gè)角的度數(shù)。復(fù)習(xí)角的.概念,角的表示及量角器的使用,為學(xué)習(xí)角度制作準(zhǔn)備。
探究新知在航行、測(cè)繪等工作以及生活中,我們經(jīng)常會(huì)碰到上述類似問題,即如何描述一個(gè)物體的方位。
讓學(xué)生回憶學(xué)過的描述方法,師生共同探討解決問題的辦法。
不斷移動(dòng)可疑船的位置,讓學(xué)生描述緝私艇的航線,探求解決問題的規(guī)律。
方位的表示通常用北偏東多少度、北偏西多少度或者南偏東多少度、南偏西多少度來表示。北偏東45度、北偏西45度、南偏東45度、南偏西45度,分別稱為東北方向、西北方向,東南方向、西南方向。
初中數(shù)學(xué)教案 13
教學(xué)目標(biāo):
1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動(dòng),體會(huì)統(tǒng)計(jì)在實(shí)際生活中的應(yīng)用。
2、收集統(tǒng)計(jì)在生活中應(yīng)用的例子,整理收集數(shù)據(jù)的方法。
3、在解決問題的過程中,整理所學(xué)習(xí)的統(tǒng)計(jì)圖,和統(tǒng)計(jì)量,能用自己的語言描述過各種統(tǒng)計(jì)圖的特點(diǎn),掌握整理收集數(shù)據(jù)的方法。
教學(xué)過程:
一、課前預(yù)習(xí),出示預(yù)習(xí)提綱:
1、我們學(xué)習(xí)了哪幾種統(tǒng)計(jì)圖?
2、這幾種統(tǒng)計(jì)圖各有什么特點(diǎn)?
3、概率的知識(shí)有哪些?
二、展示與交流
(一)提出問題
1、(出示問題情境)我們班要和希望小學(xué)的六(1)班建立手拉手班級(jí),怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨(dú)立列出幾個(gè)你想調(diào)查的問題。(寫在練習(xí)本上)
3、四人小組交流,整理出你們小組都比較感興趣的,又能實(shí)施的3個(gè)問題。(小組匯報(bào)、交流、整理)
4、接著全班匯報(bào)交流(師羅列在黑板上)
師:大家想調(diào)查這么多的問題,現(xiàn)在我們班選擇其中有價(jià)值又能實(shí)施的問題進(jìn)行調(diào)查。(師根據(jù)生的回答進(jìn)行歸納、整理)
(二)收集數(shù)據(jù)和整理數(shù)據(jù)
1、師:調(diào)查這幾個(gè)問題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的方法。
2、師:開展實(shí)際調(diào)查的話,如何進(jìn)行調(diào)查比較有效?在調(diào)查的時(shí)候,大家需要注意什么?
(三)開展調(diào)查
1、針對(duì)學(xué)生提出的某個(gè)問題,先組織小組有效的開展收集和整理數(shù)據(jù)的活動(dòng),然后把數(shù)據(jù)記錄下來,并進(jìn)行整理。
2、師:誰來說一說你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報(bào))
3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書)
4、師:分析上面的`數(shù)據(jù),你能得到哪些信息?
5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計(jì)圖比較好呢?
6、師:根據(jù)這些信息,你還能提出什么數(shù)學(xué)問題?
(四)回顧統(tǒng)計(jì)活動(dòng)
1、師:在剛才的統(tǒng)計(jì)活動(dòng),我們都做了些什么?你能按順序說一說嗎?
師板書:提出問題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。
2、收集在生活中應(yīng)用統(tǒng)計(jì)的例子,并說說這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)
指名同學(xué)匯報(bào),其他同學(xué)注意聽,并指出這個(gè)同學(xué)舉的例子中你可以獲得什么信息?
3、結(jié)合生活中的例子說說收集數(shù)據(jù)有哪些方法?
(1)先讓學(xué)生在小組內(nèi)交流,引導(dǎo)學(xué)生結(jié)合例子(充分利用第2題中收集來
的實(shí)例)來說說自己的方法。
(2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問他人、調(diào)查實(shí)驗(yàn)等。
4、師:同學(xué)們,我們已經(jīng)對(duì)統(tǒng)計(jì)表和統(tǒng)計(jì)圖進(jìn)行了系統(tǒng)的學(xué)習(xí),回憶一下我們已經(jīng)學(xué)過了哪些統(tǒng)計(jì)圖,對(duì)這些統(tǒng)計(jì)圖,你已經(jīng)知道了哪些知識(shí)?
初中數(shù)學(xué)教案 14
學(xué)習(xí)目標(biāo):
1、學(xué)會(huì)用計(jì)算器進(jìn)行有理數(shù)的除法運(yùn)算.
2、掌握有理數(shù)的混合運(yùn)算順序.
3、通過探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣
學(xué)習(xí)重點(diǎn):
有理數(shù)的混合運(yùn)算
學(xué)習(xí)難點(diǎn):
運(yùn)算順序的'確定與性質(zhì)符號(hào)的處理
教學(xué)方法:
觀察、類比、對(duì)比、歸納
教學(xué)過程
一、學(xué)前準(zhǔn)備
1、計(jì)算
(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的問題1,計(jì)算方便嗎?想過別的方法嗎?
2、由上面的問題2,你的計(jì)算方法是先算法,再算法。
3、結(jié)合問題1,閱讀課本P36—P37頁內(nèi)容(帶計(jì)算器的同學(xué)跟著操作、練習(xí))
4、結(jié)合問題2,你先猜想,有理數(shù)的混合運(yùn)算順序應(yīng)該是?
5、閱讀P36,并動(dòng)手做做
三、新知應(yīng)用
1、計(jì)算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、師生小結(jié)
四、回顧與反思
請(qǐng)你回顧本節(jié)課所學(xué)習(xí)的主要內(nèi)容
3頁
五、自我檢測(cè)
1、選擇題
1)若兩個(gè)有理數(shù)的和與它們的積都是正數(shù),則這兩個(gè)數(shù)( )
A.都是正數(shù)B.是符號(hào)相同的非零數(shù)C.都是負(fù)數(shù)D.都是非負(fù)數(shù)
2)下列說法正確的是( )
A.負(fù)數(shù)沒有倒數(shù)B.正數(shù)的倒數(shù)比自身小
C.任何有理數(shù)都有倒數(shù)D.-1的倒數(shù)是-1
3)關(guān)于0,下列說法不正確的是( )
A.0有相反數(shù)B.0有絕對(duì)值
C.0有倒數(shù)D.0是絕對(duì)值和相反數(shù)都相等的數(shù)
4)下列運(yùn)算結(jié)果不一定為負(fù)數(shù)的是( )
A.異號(hào)兩數(shù)相乘B.異號(hào)兩數(shù)相除
C.異號(hào)兩數(shù)相加D.奇數(shù)個(gè)負(fù)因數(shù)的乘積
5)下列運(yùn)算有錯(cuò)誤的是( )
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列運(yùn)算正確的是( )
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、計(jì)算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作業(yè)
1、P39第7題(4、5、7、8)、第8題
2、選做題:P39第10、11、12、1314、15題
初中數(shù)學(xué)教案 15
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.了解:代數(shù)和的概念.
2.理解:有理數(shù)加減法可以互相轉(zhuǎn)化.
3.應(yīng)用:會(huì)進(jìn)行加減混合運(yùn)算.
(二)能力訓(xùn)練點(diǎn)
培養(yǎng)學(xué)生的口頭表達(dá)能力及計(jì)算的`準(zhǔn)確能力.
(三)德育滲透點(diǎn)
通過學(xué)習(xí)一切加減法運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想.
(四)美育滲透點(diǎn)
學(xué)習(xí)了本節(jié)課就知道一切加減法運(yùn)算都可以統(tǒng)一成加法運(yùn)算.體現(xiàn)了數(shù)學(xué)的統(tǒng)一美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用嘗試指導(dǎo)法,體現(xiàn)學(xué)生主體地位,每一環(huán)節(jié),設(shè)置一定題目進(jìn)行鞏固練習(xí),步步為營(yíng),分散難點(diǎn),解決關(guān)鍵問題.
2.學(xué)生寫法:練習(xí)→尋找簡(jiǎn)單的一般性的方法→練習(xí)鞏固.
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):把加減混合運(yùn)算算式理解為加法算式.
2.難點(diǎn):把省略括號(hào)和的形式直接按有理數(shù)加法進(jìn)行計(jì)算.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師提出問題學(xué)生練習(xí)討論,總結(jié)歸納加減混合運(yùn)算的一般步驟,教師出示練習(xí)題,學(xué)生練習(xí)反饋.
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:前面我們學(xué)習(xí)了有理數(shù)的加法和減法,同學(xué)們學(xué)得都很好!請(qǐng)同學(xué)們看以下題目:
-9+(+6);(-11)-7.
師:(1)讀出這兩個(gè)算式.
(2)“+、-”讀作什么?是哪種符號(hào)?
“+、-”又讀作什么?是什么符號(hào)?
學(xué)生活動(dòng):口答教師提出的問題.
師繼續(xù)提問:(1)這兩個(gè)題目運(yùn)算結(jié)果是多少?
(2)(-11)-7這題你根據(jù)什么運(yùn)算法則計(jì)算的?
學(xué)生活動(dòng):口答以上兩題(教師訂正).
師小結(jié):減法往往通過轉(zhuǎn)化成加法后來運(yùn)算.
【教法說明】為了進(jìn)行有理數(shù)的加減混合運(yùn)算,必須先對(duì)有理數(shù)加法,特別是有理數(shù)減法的題目進(jìn)行復(fù)習(xí),為進(jìn)一步學(xué)習(xí)加減混合運(yùn)算奠定基礎(chǔ).這里特別指出“+、-”有時(shí)表示性質(zhì)符號(hào),有時(shí)是運(yùn)算符號(hào),為在混合運(yùn)算時(shí)省略加號(hào)、括號(hào)時(shí)做必要的準(zhǔn)備工作.
初中數(shù)學(xué)教案 16
教學(xué)目標(biāo):
1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;
2、能體會(huì)引進(jìn)負(fù)數(shù)的必要性和意義,建立正數(shù)和負(fù)數(shù)的數(shù)感。
重點(diǎn):
通過列舉現(xiàn)實(shí)世界中的“相反意義的量”的例子來引進(jìn)正數(shù)和負(fù)數(shù),要求學(xué)生理解正數(shù)和負(fù)數(shù)的意義,為以后通過實(shí)例引進(jìn)有理數(shù)的大小比較、加法和乘法法則打基礎(chǔ)。
難點(diǎn):
對(duì)負(fù)數(shù)的意義的理解。
教學(xué)過程:
一、知識(shí)導(dǎo)向:本節(jié)課是一個(gè)從小學(xué)過渡的知識(shí)點(diǎn),主要是要抓緊在數(shù)范圍上擴(kuò)充,對(duì)引進(jìn)“負(fù)數(shù)”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學(xué)中有關(guān)數(shù)的范圍及數(shù)的分類,指出小學(xué)中的“數(shù)”是為了滿足生產(chǎn)和生活的需要而產(chǎn)生發(fā)展起來的.。如:0,1,2,3,…
2、能讓學(xué)生舉例出更多的有關(guān)生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對(duì)立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會(huì)發(fā)現(xiàn):如果只用原來所學(xué)過的數(shù)很難區(qū)分具有相反意義的量。
一般地,對(duì)于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學(xué)過的數(shù)表示;把與它意義相反的量規(guī)定為負(fù)的,用過去學(xué)過的數(shù)(零除外)前面放上一個(gè)“—”號(hào)來表示。
如:在表示溫度時(shí),通常規(guī)定零上為“正”,零下為“負(fù)”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負(fù)數(shù),如:-3,-45,…過去學(xué)過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負(fù)數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負(fù)數(shù),1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓(xùn)練:P18練習(xí):1,2,3,4。
四、知識(shí)小結(jié):
從本節(jié)課所學(xué)的內(nèi)容中,應(yīng)能從數(shù)的角度來區(qū)分小學(xué)與初中的異同點(diǎn),通過運(yùn)用發(fā)現(xiàn)相反意義量,能理解引進(jìn)“負(fù)數(shù)”的必要性及其意義。
五、作業(yè)鞏固:
1、每個(gè)同學(xué)分別舉出5個(gè)生活中表示相反意義量的的例子;并用正、負(fù)數(shù)來表示;
2、分別舉出幾個(gè)正數(shù)與負(fù)數(shù)(最少6個(gè))。 3、P20習(xí)題2.1:1題。
初中數(shù)學(xué)教案 17
教學(xué)目標(biāo):
1、使學(xué)生掌握有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡(jiǎn)化運(yùn)算。
2、培養(yǎng)學(xué)生觀察、比較、歸納及運(yùn)算能力。
重點(diǎn):有理數(shù)加法運(yùn)算律及其運(yùn)用。
重點(diǎn):靈活運(yùn)用運(yùn)算律
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
1、小學(xué)時(shí)已學(xué)過的加法運(yùn)算律有哪幾條?
2、猜一猜:在有理數(shù)的加法中,這兩條運(yùn)算律仍然適用嗎?
3、(1)計(jì)算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、講授新課
教師:你會(huì)用文字表述加法的兩條運(yùn)算律嗎?你會(huì)用字母表示加法的這兩條運(yùn)算律嗎?
。▽W(xué)生回答省略)
師生共同歸納:加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。即(a+b)+c=a+(b+c)
講解例3
教師:例3中是怎樣使計(jì)算簡(jiǎn)化的?這樣做的根據(jù)是什么?(請(qǐng)兩位同學(xué)起來回答)
三、鞏固知識(shí)
教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運(yùn)算律?
師生共同得出:解法2比較好,因?yàn)樗腵運(yùn)算量比較小。解法2中使用了加法交換律和加法結(jié)合律。
四、總結(jié)
本節(jié)課主要學(xué)習(xí)有理數(shù)加法運(yùn)算律及其運(yùn)用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運(yùn)算律與小學(xué)學(xué)習(xí)的運(yùn)算律相同,運(yùn)用加法運(yùn)算律的目的為了簡(jiǎn)化運(yùn)算。解題技巧是將正數(shù)分別相加,再把負(fù)數(shù)分別相加,然后再把它們的和相加。
五、布置作業(yè)
初中數(shù)學(xué)教案 18
【教學(xué)目標(biāo)】
1.熟練有理數(shù)乘法法則;
2.探索運(yùn)用乘法運(yùn)算律簡(jiǎn)化運(yùn)算.
【對(duì)話探索設(shè)計(jì)】
〖探索1
你知道乘法的交換律和結(jié)合律嗎?你會(huì)用字母表示它們嗎?在有理數(shù)范圍內(nèi),它們?nèi)匀怀闪?
〖閱讀理解
乘法交換律和結(jié)合律(見P40)
〖探索2
下列計(jì)算若按順序依次相乘怎樣算? 用運(yùn)算律為什么能簡(jiǎn)化運(yùn)算?
(1)252004 (2) - 1999
〖探索3
運(yùn)用運(yùn)算律真的能節(jié)省時(shí)間嗎?分兩個(gè)大組,比一比:
計(jì)算(-198)
〖練習(xí)1
運(yùn)用乘法交換律和結(jié)合律簡(jiǎn)化運(yùn)算:
(1)1999125 (2) -1097
〖探索4
1.每千克大米1.60元,第一天購(gòu)進(jìn)3590千克,第二天又購(gòu)進(jìn)6410千克,兩天一共要付多少錢?你知道這道題有哪兩種算法嗎?哪一種簡(jiǎn)便?
2.如右圖,你會(huì)用兩種方法求長(zhǎng)方形ABCD的面積嗎?
〖例題學(xué)習(xí)
P41.例5
〖作業(yè)
P41.練習(xí)
〖補(bǔ)充作業(yè)
1.計(jì)算(注意運(yùn)用分配律簡(jiǎn)化運(yùn)算):
(1)-6(100-); (2)(-12).
(2)2(-3)4(-5)(-6)789(-10);
(3) 2(-3)4(-5)(-6)0789(-10);
4.下列各式的積(冪)是正的還是負(fù)的?為什么?
(1)(-3)(-3)(-3)(-3)(-3).
5.運(yùn)用乘法交換律和結(jié)合律簡(jiǎn)化運(yùn)算:
(1)-98(-0.6); (2)-1999(-)()
【補(bǔ)充練習(xí)】
1.某地氣象統(tǒng)計(jì)資料表明,高度每增加,氣溫就降低大約.現(xiàn)在地面氣溫是,則在的'高空的氣溫是多少?
2.運(yùn)用分配律化簡(jiǎn)下列的式子:
(1)例3x+9x+x (2)13x-20x+5x;
=(3+9+1)x
=13x;
(3)12-9 (4)-z-7z-8z.
初中數(shù)學(xué)教案 19
學(xué)習(xí)目標(biāo):
1、理解加減法統(tǒng)一成加法運(yùn)算的意義.
2、會(huì)將有理數(shù)的加減混合運(yùn)算轉(zhuǎn)化為有理數(shù)的加法運(yùn)算.
3、培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的.信心.
學(xué)習(xí)重點(diǎn)、難點(diǎn):
有理數(shù)加減法統(tǒng)一成加法運(yùn)算
教學(xué)方法:
講練相結(jié)合
教學(xué)過程
一、學(xué)前準(zhǔn)備
1、一架飛機(jī)作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米
記作+4.5千米—3.2千米+1.1千米—1.4千米
請(qǐng)你們想一想,并和同伴一起交流,算算此時(shí)飛機(jī)比起飛點(diǎn)高了千米.
2、你是怎么算出來的,方法是
二、探究新知
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計(jì)算呢?還是先自己獨(dú)立動(dòng)動(dòng)手吧!
2、怎么樣,計(jì)算出來了嗎,是怎樣計(jì)算的,與同伴交流交流,師巡視指導(dǎo).
3、師生共同歸納:遇到一個(gè)式子既有加法,又有減法,第一步應(yīng)該先把減法轉(zhuǎn)化為 .再把加號(hào)記在腦子里,省略不寫
如:(-20)+(+3)-(-5)-(+7)有加法也有減法
=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法
=-20+3+5-7再把加號(hào)記在腦子里,省略不寫
可以讀作:“負(fù)20、正3、正5、負(fù)7的”或者“負(fù)20加3加5減7”.
4、師生完整寫出解題過程
三、解決問題
1、解決引例中的問題,再比較前面的方法,你的感覺是
2、例題:計(jì)算-4.4-(-4)-(+2)+(-2)+12.4
3、練習(xí):計(jì)算1)(—7)—(+5)+(—4)—(—10)
四、鞏固
1、小結(jié):說說這節(jié)課的收獲
2、P241、2
3、計(jì)算
1)27—18+(—7)—322)
五、作業(yè)
1、P2552、P26第8題、14題
初中數(shù)學(xué)教案 20
教學(xué)目的
1、使學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,掌握實(shí)數(shù)的分類,會(huì)準(zhǔn)確判斷一個(gè)數(shù)是有理數(shù)還是無理數(shù)。
2、使學(xué)生能了解實(shí)數(shù)絕對(duì)值的意義。
3、使學(xué)生能了解數(shù)軸上的點(diǎn)具有一一對(duì)應(yīng)關(guān)系。
4、由實(shí)數(shù)的分類,滲透數(shù)學(xué)分類的思想。
5、由實(shí)數(shù)與數(shù)軸的一一對(duì)應(yīng),滲透數(shù)形結(jié)合的思想。
教學(xué)分析
重點(diǎn):無理數(shù)及實(shí)數(shù)的`概念。
難點(diǎn):有理數(shù)與無理數(shù)的區(qū)別,點(diǎn)與數(shù)的一一對(duì)應(yīng)。
教學(xué)過程
一、復(fù)習(xí)
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。
判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號(hào)的數(shù)都是無理數(shù)。
2、實(shí)數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實(shí)數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實(shí)數(shù)的相反數(shù):
5、實(shí)數(shù)的絕對(duì)值:
6、實(shí)數(shù)的運(yùn)算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
。1)任何實(shí)數(shù)的偶次冪是正實(shí)數(shù)。( )
。2)在實(shí)數(shù)范圍內(nèi),若| x|=|y|則x=y。( )
(3)0是最小的實(shí)數(shù)。( )
。4)0是絕對(duì)值最小的實(shí)數(shù)。( )
解:略
三、練習(xí)
P148 練習(xí):3、4、5、6。
四、小結(jié)
1、今天我們學(xué)習(xí)了實(shí)數(shù),請(qǐng)同學(xué)們首先要清楚,實(shí)數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對(duì)實(shí)數(shù)兩種不同的分類要清楚。
2、要對(duì)應(yīng)有理數(shù)的相反數(shù)與絕對(duì)值定義及運(yùn)算律和運(yùn)算性質(zhì),來理解在實(shí)數(shù)中的運(yùn)用。
五、作業(yè)
1、P150 習(xí)題A:3。
2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案08-12
人教版初中數(shù)學(xué)教案07-17
角初中數(shù)學(xué)教案12-30
初中數(shù)學(xué)教案--實(shí)數(shù)09-29
初中數(shù)學(xué)教案:矩形01-01
初中數(shù)學(xué)教案《圓》03-05
【推薦】初中數(shù)學(xué)教案11-16
【精】初中數(shù)學(xué)教案11-21
【熱門】初中數(shù)學(xué)教案11-18
初中數(shù)學(xué)教案【熱】11-17