初中數(shù)學教案(精選15篇)
作為一名教學工作者,往往需要進行教案編寫工作,教案是教學活動的總的組織綱領和行動方案。那么問題來了,教案應該怎么寫?下面是小編收集整理的初中數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數(shù)學教案1
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學思考
1.經(jīng)歷探索具體問題中的數(shù)量關系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學習,體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學難點
分析實際問題中的相等關系,列出方程。
教學過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學生獨立思考、回答交流。
本次活動中教師關注:
。1)學生能否準確理解運用等式性質(zhì)和合并同列項求解方程。
。2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導學生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?
。▽W生嘗試提問)
學生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設未知數(shù):設這個班有x名學生。
3.列代數(shù)式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)
4.找相等關系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設問4:以上解方程中“移項”起了什么作用?
學生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關系?
學生思考回答。
教師關注:
。1)學生對列方程解決實際問題的一般步驟:設未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學生講解,獨立完成,板演。
提問:“移項”是注意什么?
學生:變號。
教師關注:學生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學生獨立完成,用實物投影展示部分學而生練習。
教師關注:
1.學生在計算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。
3.用實物投影展示學困生的`完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導學生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?
提問2:本節(jié)課重點利用了什么相等關系,來列的方程?
教師組織學生就本節(jié)課所學知識進行小結。
學生進行總結歸納、回答交流,相互完善補充。
教師關注:學生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導學生思考、交流。
引導學生對本節(jié)所學知識進行歸納、總結和梳理,以便于學生掌握和運用。
布置作業(yè):
第93頁第3題
初中數(shù)學教案2
一、素質(zhì)教育目標
(一)知識教學點
1.掌握的三要素,能正確畫出.
2.能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù).
(二)能力訓練點
1.使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識.
2.對學生滲透數(shù)形結合的思想方法.
(三)德育滲透點
使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數(shù)形的結合,學生會得到和諧美的享受.
二、學法引導
1.教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法.
2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數(shù).
2.難點:有理數(shù)和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創(chuàng)設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數(shù)呢?
這種表示數(shù)的圖形就是今天我們要學的'內(nèi)容—(板書課題).
【教法說明】從溫度計用標有讀數(shù)的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內(nèi)容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數(shù)學問題的訓練,培養(yǎng)了用數(shù)學的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).
第二步:規(guī)定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當?shù)拈L度為單位長度(相當于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數(shù)?
(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數(shù)?原點向左個單位長度的B點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。
初中數(shù)學教案3
教學目標
1, 整理前兩個學段學過的整數(shù)、分數(shù)(包括小數(shù))的知識,掌握正數(shù)和負數(shù)的概念;
2, 能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3, 體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。
教學難點 正確區(qū)分兩種不同意義的量。
知識重點 兩種相反意義的量
教學過程(師生活動) 設計理念
設置情境
引入課題 上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經(jīng)學過的數(shù),并由此請學生思考:生
活中僅有這些“以前學過的數(shù)”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經(jīng)是七年級的學生了,我是你們的數(shù)學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數(shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學過的數(shù)的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?
請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。 先回顧小學里學過的數(shù)的類型,歸納出我們已經(jīng)學了整數(shù)和分數(shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數(shù),這樣做強調(diào)了數(shù)學的嚴密性,但對于學生來說,更多
地感到了數(shù)學的枯燥乏味為了既復習小學里學過的數(shù),又能激發(fā)學生的學習興趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數(shù)學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的'量奠定基礎。
分析問題
探究新知 問題3:前面帶有“一”號的新數(shù)我們應怎樣命名它呢?為什么要引人負數(shù)呢?通常在日常生活中我們用正數(shù)和負數(shù)分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數(shù)和負數(shù)的表示.
強調(diào):用正,負數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量. 這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。
舉一反三思維拓展經(jīng)過上面的討論交流,學生對為什么要引人負數(shù),對怎樣用正數(shù)和負數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數(shù)和負數(shù)概念的理解,并開拓思維.
問題4:請同學們舉出用正數(shù)和負數(shù)表示的例子.
問題5:你是怎樣理解“正整數(shù)”“負整數(shù),,’’正分數(shù)”和“負分數(shù)”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現(xiàn),也能進一步幫助學生理解引負數(shù)的必要性
課堂練習 教科書第5頁練習
小結與作業(yè)
課堂小結 圍繞下面兩點,以師生共同交流的方式進行:
1, 0由于實際問題中存在著相反意義的量,所以要引人負數(shù),這樣數(shù)的范圍就擴大了;
2,正數(shù)就是以前學過的0以外的數(shù)(或在其前面加“+”),負數(shù)就是在以前學過的0以外的數(shù)前面加“-”。
本課作業(yè) 教科書第7頁習題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學生的需要
初中數(shù)學教案4
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內(nèi)兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據(jù)此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
、勰惝嫷闹本有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的'個數(shù)為( )
A.0個 B.1個 C.2個 D.3個
。ǘ┨羁疹}:
1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數(shù)學教案5
一、教材的地位與作用
《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節(jié)。在此之前學生已經(jīng)學習了一元一次方程,這為本節(jié)的學習起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。
二、教學目標
(一)知識與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會將一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
(二)數(shù)學思考:
體會學習二元一次方程的必要性,學會獨立思考,體會數(shù)學的轉(zhuǎn)化思想和主元思想。
(三)問題解決:
初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。
(四)情感態(tài)度:
培養(yǎng)學生發(fā)現(xiàn)意識和能力,使其具有強烈的好奇心和求知欲。
三、教學重點與難點
教學重點:二元一次方程及其解的概念。
教學難點:二元一次方程的概念里“含未知數(shù)的項的次數(shù)”的理解;把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
四、教法與學法分析
教法:情境教學法、比較教學法、閱讀教學法。
學法:閱讀、比較、探究的學習方式。
五、教學過程
1.創(chuàng)設情境,引入新課
從學生熟悉的姚明受傷事件引入。
師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。
。1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?
。2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?
設姚明投進了x個兩分球,罰進了y個球,可列出方程。
(3)在雄鹿隊與火箭隊的比賽中易建聯(lián)全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?
設易建聯(lián)投進了x個兩分球,y個三分球,可列出方程。
師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?
從而揭示課題。
(設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數(shù)學模型,從而回顧一元一次方程的概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學來源于生活,又應用于生活,通過創(chuàng)設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態(tài)投入學習,而且“會學”“樂學”。)
2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學生思考后回答)
師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區(qū)別嗎?(同學們思考后回答)
師:根據(jù)概念,你覺得二元一次方程應具備哪幾個特征?
活動:你自己構造一個二元一次方程。
快速判斷:下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
。ㄔO計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數(shù)”形象化。)
二元一次方程解的概念
師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯(lián)可能投中幾個兩分球,幾個三分球嗎?
師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數(shù)的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)
使二元一次方程兩邊的值相等的一對未知數(shù)的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質(zhì):使方程左右兩邊相等的一對未知數(shù)的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數(shù)的取值”的真正含義。)
二元一次方程解的不唯一性
對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?
。ㄔO計意圖:設計此環(huán)節(jié),目的有三個:首先,是讓學生學會如何檢驗一對未知數(shù)的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數(shù)的取值,就可以代入方程算出另一個未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
。1)當x=2時,求所對應的y的值;
(2)取一個你自己喜歡的數(shù)作為x的值,求所對應的y的值;
。3)用含x的代數(shù)式表示y;
。4)用含y的代數(shù)式表示x;
。5)當x=負2,0時,所對應的y的值是多少?
。6)寫出方程3x+2y=10的三個解.
(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程,實質(zhì)是解一個關于y的一元一次方程,滲透數(shù)學的主元思想。以此突破本節(jié)課的難點。)
大顯身手:
課內(nèi)練習第2題
梳理知識,課堂升華
本節(jié)課你有收獲嗎?能和大家說說你的感想嗎?3.作業(yè)布置
必做題:書本作業(yè)題1、2、3、4。
選做題:書本作業(yè)題5、6。
設計說明
本節(jié)授課內(nèi)容屬于概念課教學。數(shù)學學科的'內(nèi)容有其固有的組成規(guī)律和邏輯結構,它總是由一些最基本的數(shù)學概念作為核心和邏輯起點,形成系統(tǒng)的數(shù)學知識,所以數(shù)學概念是數(shù)學課程的核心。只有真正理解數(shù)學概念,才能理解數(shù)學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節(jié)課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點,進而理解“含有未知數(shù)的項的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數(shù)個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數(shù)的取值,從而讓學生產(chǎn)生有后續(xù)學習的愿望。
在講授用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,
此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數(shù)的取值,代入原方程求另一個未知數(shù)的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數(shù),那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”在求值過程中的簡潔性,強化這種代數(shù)形式。另外,在引導學生推導“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程中,滲透數(shù)學的主元思想和轉(zhuǎn)化思想。
初中數(shù)學教案6
教學目標:
1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動,體會統(tǒng)計在實際生活中的應用。
2、收集統(tǒng)計在生活中應用的例子,整理收集數(shù)據(jù)的方法。
3、在解決問題的過程中,整理所學習的統(tǒng)計圖,和統(tǒng)計量,能用自己的語言描述過各種統(tǒng)計圖的特點,掌握整理收集數(shù)據(jù)的方法。
教學過程:
一、課前預習,出示預習提綱:
1、我們學習了哪幾種統(tǒng)計圖?
2、這幾種統(tǒng)計圖各有什么特點?
3、概率的知識有哪些?
二、展示與交流
(一)提出問題
1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨立列出幾個你想調(diào)查的`問題。(寫在練習本上)
3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)
4、接著全班匯報交流(師羅列在黑板上)
師:大家想調(diào)查這么多的問題,現(xiàn)在我們班選擇其中有價值又能實施的問題進行調(diào)查。(師根據(jù)生的回答進行歸納、整理)
(二)收集數(shù)據(jù)和整理數(shù)據(jù)
1、師:調(diào)查這幾個問題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的方法。
2、師:開展實際調(diào)查的話,如何進行調(diào)查比較有效?在調(diào)查的時候,大家需要注意什么?
(三)開展調(diào)查
1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數(shù)據(jù)的活動,然后把數(shù)據(jù)記錄下來,并進行整理。
2、師:誰來說一說你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報)
3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書)
4、師:分析上面的數(shù)據(jù),你能得到哪些信息?
5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計圖比較好呢?
6、師:根據(jù)這些信息,你還能提出什么數(shù)學問題?
(四)回顧統(tǒng)計活動
1、師:在剛才的統(tǒng)計活動,我們都做了些什么?你能按順序說一說嗎?
師板書:提出問題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。
2、收集在生活中應用統(tǒng)計的例子,并說說這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)
指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?
3、結合生活中的例子說說收集數(shù)據(jù)有哪些方法?
(1)先讓學生在小組內(nèi)交流,引導學生結合例子(充分利用第2題中收集來
的實例)來說說自己的方法。
(2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問他人、調(diào)查實驗等。
4、師:同學們,我們已經(jīng)對統(tǒng)計表和統(tǒng)計圖進行了系統(tǒng)的學習,回憶一下我們已經(jīng)學過了哪些統(tǒng)計圖,對這些統(tǒng)計圖,你已經(jīng)知道了哪些知識?
初中數(shù)學教案7
今天小編為大家精心整理了一篇有關初中數(shù)學教案之公式的相關內(nèi)容,以供大家閱讀!
教學設計示例一——公式
教學目標
1.了解公式的意義,使學生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學生觀察、分析及概括的能力;
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議
一、教學重點、難點
重點:通過具體例子了解公式、應用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例二——公式
一、教學目標
。ㄒ唬┲R教學點
1.使學生能利用公式解決簡單的實際問題.
2.使學生理解公式與代數(shù)式的關系.
。ǘ┠芰τ柧汓c
1.利用數(shù)學公式解決實際問題的能力.
2.利用已知的公式推導新公式的能力.
(三)德育滲透點
數(shù)學來源于生產(chǎn)實踐,又反過來服務于生產(chǎn)實踐.
。ㄋ模┟烙凉B透點
數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美.
二、學法引導
1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點
2.學生學法:觀察分析推導計算
三、重點、難點、疑點及解決辦法
1.重點:利用舊公式推導出新的圖形的計算公式.
2.難點:同重點.
3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.
七、教學步驟
。ㄒ唬﹦(chuàng)設情景,復習引入
師:同學們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經(jīng)學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.
在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學生感知用割補法求圖形的面積。
(二)探索求知,講授新課
師:下面利用面積公式進行有關計算
(出示投影2)
例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。
師生共同分析:1.根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?
2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)
學生口述解題過程,教師予以指正并指出,強調(diào)解題的規(guī)范性.
【教法說明】1.通過分析,引導學生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習慣.
。ǔ鍪就队3)
例2如圖是一個環(huán)形,外圓半徑,內(nèi)圓半徑求這個環(huán)形的面積
學生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請學生板演,其他同學做在練習本上,教育巡回指導.
評講時注意1.如果有學生作了簡便計算,則給予表揚和鼓勵:如果沒有學生這樣計算,則啟發(fā)學生這樣計算.
2.本題實際上是由圓的面積公式推導出環(huán)形面積公式.
3.進一步強調(diào)解題的規(guī)范性
教法說明,讓學生做例題,學生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的'途徑.
測試反饋,鞏固練習
。ǔ鍪就队4)
1.計算底,高的三角形面積
2.已知長方形的長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長是多少?當時,求t
3.已知圓的半徑,,求圓的周長C和面積S
4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。
(1)求A地到B地所用的時間公式。
(2)若千米/時,千米/時,求從A地到B地所用的時間。
學生活動:分兩次完成,每次兩題,兩人板演,其他同學在練習本上完成,做好后同桌交換評判,第一次可請兩位基礎較差的同學板演,第二次請中等層次的學生板演.
【教法說明】面向全體,分層教學,能照顧兩極,使所有的同學有所發(fā)展.
師:公式本身是用等號聯(lián)接起來的代數(shù)式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導出新的公式.
八、隨堂練習
。ㄒ唬┨羁
1.圓的半徑為R,它的面積________,周長_____________
2.平行四邊形的底邊長是,高是,它的面積_____________;如果,,那么_________
3.圓錐的底面半徑為,高是,那么它的體積__________如果,,那么_________
。ǘ┮环N塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,,V是多少?
九、布置作業(yè)
(一)必做題課本第xx頁x、x、x第xx頁x組x
(二)選做題課本第xx頁xx組x
初中數(shù)學教案8
教學建議
知識結構
重難點分析
本節(jié)的重點是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學習的正方形的基礎。
本節(jié)的難點是性質(zhì)的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:
1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.在現(xiàn)實中的實例較多,在講解的性質(zhì)和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質(zhì)和判定,既增加了學生的參與感又鞏固了所學的知識.
3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4.在對性質(zhì)的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5.由于和的性質(zhì)定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在性質(zhì)應用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學目標
1.掌握概念,知道與平行四邊形的關系.
2.掌握的性質(zhì).
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養(yǎng)學生的學習興趣.
5.根據(jù)平行四邊形與矩形、的從屬關系,通過畫圖向?qū)W生滲透集合思想.
6.通過性質(zhì)的學習,體會的圖形美.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:的性質(zhì)定理.
2.教學難點:把的性質(zhì)和直角三角形的知識綜合應用.
3.疑點:與矩形的性質(zhì)的區(qū)別.
四、課時安排
1課時
五、教具學具準備
教具(做一個短邊可以運動的`平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
【復習提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.
【引入新課】
我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質(zhì),應突出兩條:
。1)強調(diào)是平行四邊形.
(2)一組鄰邊相等.
2.的性質(zhì):
教師強調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).
下面研究的性質(zhì):
師:同學們根據(jù)的定義結合圖形猜一下有什么性質(zhì)(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.
性質(zhì)定理1:的四條邊都相等.
由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到
性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導學生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關系?
生:全等.
師:它們的底和高和兩條對角線有什么關系?
生:分別是兩條對角線的一半.
師:如果設的兩條對角線分別為、,則的面積是什么?
生:
教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑W生用定義來判定.)
例3已知的邊長為,,對角線,相交于點,如右圖,求這個的對角線長和面積.
(1)按教材的方法求面積.
。2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結、擴展】
1.小結:(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關系:
(2)性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì).
②特有性質(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業(yè)
教材P158中6、7、8,P196中10
九、板書設計
標題
定義……
性質(zhì)例2…… 小結:
性質(zhì)定理1:……例3…… ……
性質(zhì)定理2:……
十、隨堂練習
教材P151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.
初中數(shù)學教案9
一、教學案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學設計的區(qū)別
教案和教學設計都是事先設想的教學思路,是對準備實施的教學措施的簡要說明;教學案例則是對已經(jīng)發(fā)生的教學過程的反映。一個寫在教之前,一個寫在教之后;一個是預期達到什么目標,一個是結果達到什么水平。教學設計不宜于交流,教學案例適宜于交流。
3、案例與教學實錄的區(qū)別
案例與教學實錄的體例比較接近,它們都是對教學情景的描述,但教學實錄是有聞必錄,而案例則是有所選擇的,教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學案例的特點是
——真實性:案例必須是在課堂教學中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
二、數(shù)學案例的結構要素
從文章結構上看,數(shù)學案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學校還是普通學校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉(zhuǎn)變學困生,還是強調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學生的'獨立學習情況,等等。或者是一個什么樣的數(shù)學任務解決過程和方法,在課程標準中數(shù)學任務認知水平的要求怎么樣,在課堂教學中數(shù)學任務認知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學校開展研究性學習活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關鍵性的細節(jié)寫清楚。比如介紹教師如何指導學生掌握學習數(shù)學的方法,就要把學生怎么從“不會”到“會”的轉(zhuǎn)折過程,要把學習發(fā)生發(fā)展過程的細節(jié)寫清楚,要把教師觀察到的學生學習行為,學習行為反映的學生思想、情感、態(tài)度寫清楚,或者把小組合作學習的突出情況寫清楚,或者把個別學生獨立學習的典型行為寫清楚。不能把“任務”布置了一番,把“方法”介紹了一番,說到“任務”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結果。一般來說,教案和教學設計只有設想的措施而沒有實施的結果,教學實錄通常也只記錄教學的過程而不介紹教學的效果;而案例則不僅要說明教學的思路、描述教學的過程,還要交代學生學習的結果,即這種教學措施的即時效果,包括學生的反映和教師的感受等。讀者知道了結果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學指導思想、過程、結果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學困生轉(zhuǎn)化的事例,我們可以從社會學、教育學、心理學、學習理論等不同的理論角度切入,揭示成功的原因和科學的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學教學案例主題的選擇
新課程理念下的初中數(shù)學教學案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學生動手實踐、自主探究、合作交流的教學方式;
(2)體現(xiàn)教師幫助學生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學知識和技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗;
(3)體現(xiàn)讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,采用“問題情境——建立模型——解釋、應用與拓展”的模式教學的成功經(jīng)驗;
(4)體現(xiàn)數(shù)學與信息技術整合的教學方法;
(5)體現(xiàn)教師在教學過程中的組織者、引導者與合作者的作用;
(6)體現(xiàn)教學中對學生情感、態(tài)度的關注和評價,以及怎樣幫助不同的人在數(shù)學上獲得不同的發(fā)展,等等。
初中數(shù)學教案10
【學習目標】
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90的圓周角所對的弦是直徑.
4.熟練掌握圓周角的'定理及其推理的靈活運用.
設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題
【學習過程】
一、 溫故知新:
(學生活動)同學們口答下面兩個問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?
二、 自主學習:
自學教材P90---P93,思考下列問題:
1、 什么叫圓周角?圓周角的兩個特征: 。
2、 在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.
(1)一個弧上所對的圓周角的個數(shù)有多少個?
(2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?
(3).同弧上的圓周角與圓心角有什么關系?
3、默寫圓周角定理及推論并證明。
4、能去掉同圓或等圓嗎?若把同弧或等弧改成同弦或等弦性質(zhì)成立嗎?
5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?
三、 典型例題:
例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,ACB的平分線交⊙O于D,求BC、AD、BD的長。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?
四、 鞏固練習:
1、(教材P93練習1)
解:
2、(教材P93練習2)
3、(教材P93練習3)
證明:
4、(教材P95習題24.1第9題)
五、 總結反思:
【達標檢測】
1.如圖1,A、B、C三點在⊙O上,AOC=100,則ABC等于( ).
A.140 B.110 C.120 D.130
(1) (2) (3)
2.如圖2,1、2、3、4的大小關系是( )
A.3 B.32
C.2 D.2
3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則BCD等于( )
A.100 B.110 C.120 D.130
4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對的圓周角的度數(shù)是________.
5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則2=_______.
(4) (5)
6.(中考題)如圖5, 于 ,若 ,則
7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.
【拓展創(chuàng)新】
1.如圖,已知AB=AC,APC=60
(1)求證:△ABC是等邊三角形.
(2)若BC=4cm,求⊙O的面積.
3、教材P95習題24.1第12、13題。
【布置作業(yè)】教材P95習題24.1第10、11題。
初中數(shù)學教案11
教學目標:
1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數(shù)減法法則得出的過程,理解有理數(shù)減法法則的合理性。
(2)能熟練進行有理數(shù)的減法法則。
2、過程與方法
通過實例,歸納出有理數(shù)的減法法則,培養(yǎng)學生的.邏輯思維能力和運算能力,通過減法到加法的轉(zhuǎn)化,讓學生初步體會人歸的數(shù)學思想。
重點、難點
1、重點:有理數(shù)減法法則及其應用。
2、難點:有理數(shù)減法法則的應用符號的改變。
教學過程:
一、創(chuàng)設情景,導入新課
1、有理數(shù)加法運算是怎樣做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
導語:可見,有理數(shù)的減法運算在現(xiàn)實生活中也有著很廣泛的應用。(出示課題)
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過以上列式,你能發(fā)現(xiàn)減法運算與加法運算的關系嗎?
(學生分組討論,大膽發(fā)言,總結有理數(shù)的減法法則)
減去一個數(shù)等于加上這個數(shù)的相反數(shù)
教師提問、啟發(fā):(1)法則中的“減去一個數(shù)”,這個數(shù)指的是哪個數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個數(shù)的相反數(shù)”“加上”兩字怎樣理解?“這個數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?
三、應用遷移,鞏固提高
1、P.24例1 計算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內(nèi)練習:P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數(shù)減法運算游戲(每人27張牌,黑牌點數(shù)為正數(shù),紅牌點數(shù)為負數(shù),王牌點數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點數(shù)之差者獲勝,直至其中一人手中無牌為止)。
四、總結反思
(1) 有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
(2) 有理數(shù)減法的步驟:先變?yōu)榧臃,再改變減數(shù)的符號,最后按有理數(shù)加法法則計算。
五、作業(yè)
P.27習題1.4A組1、2、5、6
備選題
填空:比2小-9的數(shù)是 。
а比а+2小 。
若а小于0,е是非負數(shù),則2а-3е 0。
初中數(shù)學教案12
教學目標:
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決。
教學重點:歸納一元次方程的概念
教學難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義.
教學過程:
一、情景導入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學生說出結果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學生討論并回答
二、知識探究:
1、方程的教學(投影演示)
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
(3)3M-6(不是)(4)1+2=3(不是)
。5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學文化程度?情景三:西湖中學的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的.長和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(shù)(3)列方程
四、隨堂練習
1、投影趣味習題,
2、做一做
下面有兩道題,請選做一題。
。1)、請根據(jù)方程2X+3=21自己設計一道有實際背景的應用題。
(2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學教案-你今年幾歲了搜集整理
初中數(shù)學教案13
4.1二元一次方程
【教學目標】
知識與技能目標
1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是
二元一次方程;
2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;
3、會將一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。過程與方法目標經(jīng)歷觀察、比較、猜想、驗證等數(shù)學學習活動,培養(yǎng)分析問題的能力和數(shù)學說理能力;
情感與態(tài)度目標
1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養(yǎng)運用類比轉(zhuǎn)化的思想解決問題的能力;
2、通過對實際問題的分析,培養(yǎng)關注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)良好的數(shù)學應用意識。
【重點、難點】
重點:二元一次方程的概念及二元一次方程的解的概念。
難點1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數(shù)個,
但不是任意的兩個數(shù)是它的解。
2、把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
【教學方法與教學手段】
1、通過創(chuàng)設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一
次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
2、通過觀察、思考、交流等活動,激發(fā)學習情緒,營造學習氣氛,給學生一定的時間和
空間,自主探討,了解二元一次方程的解的不唯一性和相關性。
3、通過學練結合,以游戲的形式讓學生及時鞏固所學知識。
【教學過程】
一、創(chuàng)設情境導入新課
1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?
2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?
思考:這個問題中,有幾個未知數(shù)?能列一元一次方程求解嗎?
如果設黃卡取x張,藍卡取y張,你能列出方程嗎?
3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?
二、師生互動探索新知
1、推陳出新發(fā)現(xiàn)新知
引導學生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)名字嗎?
(板書:二元一次方程)
根據(jù)它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)
2、小試牛刀鞏固新知
判斷下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、師生互動再探新知
(1)什么是方程的解?(使方程兩邊的值相等的'未知數(shù)的值,叫做方程的解。)
(2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未
知數(shù)的值,叫做二元一次方程的一個解。)
?若未知數(shù)設為x,y,記做x?,若未知數(shù)設為a,b,記做
?y?
4、再試牛刀檢驗新知
(1)檢驗下列各組數(shù)是不是方程2a?3b?20的解:(學生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能寫出方程x-y=1的一個解嗎?(再一次讓學生感悟二元一次方程的解的不唯一性)
5、自我挑戰(zhàn)三探新知
有3張寫有相同數(shù)字的藍卡和2張寫有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設藍卡上的數(shù)字為x,黃卡上的數(shù)字為y,根據(jù)題意列方程。3x?2y?10
請找出這個方程的一個解,并寫出你得到這個解的過程。
學生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。
6、動動筆頭鞏固新知
獨立完成課本第81頁課內(nèi)練習2
三、你說我說清點收獲
比較一元一次方程和二元一次方程的相同點和不同點
相同點:方程兩邊都是整式
含有未知數(shù)的項的次數(shù)都是一次
如何求一個二元一次方程的解
四、知識鞏固
1、必答題
(1)填空題:若mxy?9x?3yn?1?7是關于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多選題:方程
y?1
x?7
(4)判斷題:方程2x?y?15的解是。()y?1
2、搶答題
是方程2x?3y?5的一個解,求a的值。(1)已知x??2
y?a
(2)寫出一個解為x?3的二元一次方程。
y?1
3、個人魅力題
寫有數(shù)字5的黃卡和寫有數(shù)字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?設黃卡取x張,藍卡取y張,根據(jù)題意列方程:5x?2y?22你能完成這道題目嗎?
五、布置作業(yè)
初中數(shù)學教案14
教學目標:
利用數(shù)形結合的數(shù)學思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。
教學重點和難點:
運用數(shù)形結合的思想方法進行解二次函數(shù),這是重點也是難點。
教學過程:
。ㄒ唬┮耄
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
(1)如何畫圖
。2)頂點、圖象與坐標軸的交點
。3)所形成的三角形以及四邊形的面積
(4)對稱軸
從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的'頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
(三)提高練習
根據(jù)我們學校人人皆知的船模特色項目設計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
。ㄋ模┳寣W生討論小結(略)
(五)作業(yè)布置
1、在直角坐標平面內(nèi),點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的解析式;
。2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(備用數(shù)據(jù): ,計算結果精確到1米)
初中數(shù)學教案15
知識技能目標
1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關問題。
過程性目標
1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結合思想解數(shù)學問題。
教學過程
一、創(chuàng)設情境
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關于原點成中心對稱。
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,—2)。
(1)求這個函數(shù)的解析式,并畫出圖象;
。2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
(2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點A(—5,m)在反比例函數(shù)圖象上,所以,
點A的坐標為。
點A關于x軸的對稱點不在這個圖象上;
點A關于y軸的對稱點不在這個圖象上;
點A關于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當—3≤x≤時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
(2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
(3)因為在第個象限內(nèi),y隨x的`增大而增大,
所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長的函數(shù)關系式;
。2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
(2)x>0。
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。
四、交流反思
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
(1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
。2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數(shù)的圖象:
。1);(2)。
2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:
(1)y和x的函數(shù)關系式;
(2)當時,y的值;
。3)當x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
【初中數(shù)學教案】相關文章:
初中數(shù)學教案08-12
初中數(shù)學教案模板11-02
角初中數(shù)學教案12-30
人教版初中數(shù)學教案07-17
初中數(shù)學教案《圓》03-05
初中趣味數(shù)學教案02-02
初中數(shù)學教案:矩形01-01
初中數(shù)學教案范文02-21
【薦】初中數(shù)學教案11-26
初中數(shù)學教案【薦】11-14