- 相關推薦
初中數(shù)學一元一次方程的教學設計
作為一名專為他人授業(yè)解惑的人民教師,有必要進行細致的教學設計準備工作,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。那么寫教學設計需要注意哪些問題呢?下面是小編為大家整理的初中數(shù)學一元一次方程的教學設計,僅供參考,希望能夠幫助到大家。
初中數(shù)學一元一次方程的教學設計 1
教學設計思想:
本節(jié)知識是探究如何用一元一次方程解決實際問題。在前面我們結合實際問題,討論了如何分析數(shù)量關系、利用相等關系列方程以及如何解方程,在此基礎上我們才可以進一步探究用一元一次方程解決實際問題。在課堂中教師出示例題,啟發(fā)學生思考,師生共同探討,學生找等量關系,列出方程,教師出示鞏固性練習,學生解答,達到鞏固所學知識的目的。
教學目標:
1.知識與技能
利用相等關系建立數(shù)學模型列方程;
掌握一元一次方程的解法。
2.過程與方法
會用方程解決簡單的實際問題,認識到建立方程模型的重要性;
在建立方程解決實際問題時,我們體會到設未知數(shù)的意義。
3.情感、態(tài)度與價值觀
體會數(shù)學建模與實際的相互密切聯(lián)系,加強數(shù)學建模思想。
教學重點:
解決相關問題時,利用相等關系列方程。
教學難點:
解決相關問題時,利用相等關系列方程。
重難點突破:
關鍵是弄清問題背景,分析清楚有關數(shù)量關系,特別是找出可以作為列方程依據的主要相等關系。
教學方法:
采用直觀分析法、引導發(fā)現(xiàn)法及嘗試指導法充分發(fā)揮學生的主體作用,使學生在輕松愉快的氣氛中掌握知識。
課時安排:
1課時。
教具準備:
投影儀。
教學過程:
創(chuàng)設情境
師:通過前幾節(jié)課的學習,同學們回憶一下,列方程解應用題的第一步是什么?
生:分析題意,設未知數(shù)。
師:很好。我們以前學的.應用題大多是求一個未知量,因而設一個未知數(shù)我們今天要學的內容需要求兩個未知量,這又如何解決呢?通過今天的學習,這些問題將得到很好的答案。
[教法說法]:此節(jié)內容與前邊內容聯(lián)系不大,所以開門見山直接提出問題,同時也引起學生的注意和好奇,使學生帶著問題進入今天的學習,激發(fā)了學生的求知欲。
師:[板書] 一元一次方程的應用
初中數(shù)學一元一次方程的教學設計 2
教學目標
知識與能力
1.通過對典型實際問題的分析,體驗從算術方法到代數(shù)方法是一種進步。
2.在根據問題尋找相等關系、根據相等關系列出方程的過程中,培養(yǎng)獲取信息、分析問題、處理問題的能力。
3.在方程的概念“含有未知數(shù)的等式”指引下經歷把實際問題抽象為數(shù)學方程的過程,認識到方程是刻畫現(xiàn)實世界的一種有效的數(shù)學模型,初步體會建立數(shù)學模型的`思想。
教學目標
過程與方法
1.能結合實際問題情境發(fā)現(xiàn)并提出數(shù)學問題。
2.通過學習進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,增強從實際問題出發(fā)建立數(shù)學模型的能力。
情感態(tài)度與價值觀目標
1.勤于思考,樂于探究,敢于發(fā)表自己的觀點;
2.以積極的態(tài)度與同伴合作,從解決實際問題中體驗數(shù)學價值。
教學重難點
重點
會用一元一次方程解決實際問題.
難點
將實際問題轉化為數(shù)學問題,通過列方程解決問題.
初中數(shù)學一元一次方程的教學設計 3
教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;
3.使學生初步養(yǎng)成正確思考問題的良好習慣。
教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
課堂教學過程設計
一、從學生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3.
答:某數(shù)為3.
(其次,用代數(shù)方法來解,教師引導,學生口述完成)
解法2:設某數(shù)為x,則有3x-2=x+4。
解之,得x=3.
答:某數(shù)為3.
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數(shù),列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關系.因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟
例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有xx千克面粉,那么運出了15%千克,由題意,得
x-15%x=42500,
所以x=50000.
答:原來有50000千克面粉.
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;
(2)例2的解方程過程較為簡捷,同學應注意模仿。
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數(shù);
(2)根據題意找出能夠表示應用題全部含義的'一個相等關系.(這是關鍵一步);
(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義
例3(投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴格規(guī)范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數(shù)為3×5+9=24.=
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
。ㄔO第一小組共摘了x個蘋果,則依題意,得)
三、課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元,求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數(shù)的35%,男工比女工多252人,求全廠總人數(shù)。
四、師生共同小結
首先,讓學生回答如下問題:
1.本節(jié)課學習了哪些內容?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當選擇變數(shù);找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶。
五、作業(yè)
1.買3千克蘋果,付出10元,找回3角4分,問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機2050臺,這比前年10月產量的2倍還多150臺,這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉,求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元,求得到一等獎與二等獎的人數(shù)
【初中數(shù)學一元一次方程的教學設計】相關文章:
初中數(shù)學教學設計范文09-27
初中數(shù)學設計教案02-25
初中數(shù)學 一元一次方程教案12-31
數(shù)學教學設計教案02-15
初中數(shù)學設計教案(14篇)03-02
初中數(shù)學教案設計09-29
初中數(shù)學教學總結05-22
初中數(shù)學設計教案14篇02-28
初中數(shù)學設計教案15篇02-26
初中數(shù)學設計教案(15篇)03-01