八年級數(shù)學(xué)的教案
作為一名專為他人授業(yè)解惑的人民教師,常常要寫一份優(yōu)秀的教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么教案應(yīng)該怎么寫才合適呢?下面是小編為大家整理的八年級數(shù)學(xué)的教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數(shù)學(xué)的教案1
知識結(jié)構(gòu):
重點與難點分析:
本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.
本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,經(jīng);煜瑤椭鷮W(xué)生認識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字敘述題也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.
教法建議:
本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程
學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。
(2)采用“類比”的學(xué)習(xí)方法,獲取知識。
由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的'不完整,教師可以做適當(dāng)?shù)狞c撥引導(dǎo)。
(3)總結(jié),形成知識結(jié)構(gòu)
為了使學(xué)生對本節(jié)課有一個完整的認識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?
一.教學(xué)目標:
1.使學(xué)生掌握等腰三角形的判定定理及其推論;
2.掌握等腰三角形判定定理的運用;
3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;
4.通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.
二.教學(xué)重點:等腰三角形的判定定理
三.教學(xué)難點:性質(zhì)與判定的區(qū)別
四.教學(xué)用具:直尺,微機
五.教學(xué)方法:以學(xué)生為主體的討論探索法
六.教學(xué)過程:
1、新課背景知識復(fù)習(xí)
(1)請同學(xué)們說出互逆命題和互逆定理的概念
估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。
(2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?
啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:
1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.
(簡稱“等角對等邊”).
由學(xué)生說出已知、求證,使學(xué)生進一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
教師可引導(dǎo)學(xué)生分析:
聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.
(2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.
(3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.
2.推論1:三個角都相等的三角形是等邊三角形.
推論2:有一個角等于60°的等腰三角形是等邊三角形.
要讓學(xué)生自己推證這兩條推論.
小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.
證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.
3.應(yīng)用舉例
例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.
分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時,常常考慮應(yīng)用外角的兩個特性①它與相鄰的內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
證明:(略)由學(xué)生板演即可.
補充例題:(投影展示)
1.已知:如圖,AB=AD,∠B=∠D.
求證:CB=CD.
分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.
證明:連結(jié)BD,在 中, (已知)
(等邊對等角)
(已知)
即
(等教對等邊)
小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.
2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.
分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.
證明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小結(jié):
(1)等腰三角形判定定理及推論.
(2)等腰三角形和等邊三角形的證法.
七.練習(xí)
教材 P.75中1、2、3.
八.作業(yè)
教材 P.83 中 1.1)、2)、3);2、3、4、5.
九.板書設(shè)計
八年級數(shù)學(xué)的教案2
知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標:會用變化的量描述事物
情感目標:回用運動的觀點觀察事物,分析事物
重點:函數(shù)的概念
難點:函數(shù)的概念
教學(xué)媒體:多媒體電腦,計算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍
教學(xué)設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
、 這張圖告訴我們哪些信息?
、 這張圖是怎樣來展示這天各時刻的.溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應(yīng)的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?
一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時,其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級數(shù)學(xué)的教案3
教學(xué)目標:
知識目標:
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。
能力目標:
1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
情感目標:
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
教學(xué)重點:
掌握函數(shù)概念。
判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
能把實際問題抽象概括為函數(shù)問題。
教學(xué)難點:
理解函數(shù)的概念。
能把實際問題抽象概括為函數(shù)問題。
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課
『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當(dāng)你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?
『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。
『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。
二、新課學(xué)習(xí)
做一做
。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?
填寫下表:
層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。
。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
、儆嬎惝(dāng)fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?
、诮o定一個V值,你能求出相應(yīng)的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?
『生』:相同點是:這三個問題中都研究了兩個變量。
不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的.關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習(xí)
書P152頁 隨堂練習(xí)1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。
函數(shù)的三種表達式:
圖象;(2)表格;(3)關(guān)系式。
五、探究活動
為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?
(答案:Y=1.8x-6或)
六、課后作業(yè)
習(xí)題6.1
八年級數(shù)學(xué)的教案4
一、學(xué)生起點分析
通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.
二、教學(xué)任務(wù)分析
《數(shù)不夠用了》是義務(wù)教育課程標準北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學(xué)生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).
本節(jié)課的教學(xué)目標是:
、偻ㄟ^拼圖活動,讓學(xué)生感受客觀世界中無理數(shù)的存在;
、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);
、蹖W(xué)生親自動手做拼圖活動,培養(yǎng)學(xué)生的.動手能力和探索精神;
、苣苷_地進行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;
三、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了6個教學(xué)環(huán)節(jié):
第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):質(zhì)疑
內(nèi)容:【想一想】
⑴一個整數(shù)的平方一定是整數(shù)嗎?
、埔粋分數(shù)的平方一定是分數(shù)嗎?
目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.
效果:為后續(xù)環(huán)節(jié)的進行起了很好的鋪墊的作用
第二環(huán)節(jié):課題引入
內(nèi)容:1.【算一算】
已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分數(shù))嗎?
2.【剪剪拼拼】
把邊長為1的兩個小正方形通過剪、拼,設(shè)法拼成一個大正方形,你會嗎?
目的:選取客觀存在的“無理數(shù)“實例,讓學(xué)生深刻感受“數(shù)不夠用了”.
效果:巧設(shè)問題背景,順利引入本節(jié)課題.
第三環(huán)節(jié):獲取新知
內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分數(shù)嗎?
【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?
釋2.滿足 的 為什么不是分數(shù)?
【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分數(shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)
【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段
目的:創(chuàng)設(shè)從感性到理性的認知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣
效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.
第四環(huán)節(jié):應(yīng)用與鞏固
內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】
【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:
1.長度是有理數(shù)的線段
2.長度不是有理數(shù)的線段
【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)
2.三邊長都是有理數(shù)
2.只有兩邊長是有理數(shù)
3.只有一邊長是有理數(shù)
4.三邊長都不是有理數(shù)
【仿一仿】:例:在數(shù)軸上表示滿足 的
解: (右2)
仿:在數(shù)軸上表示滿足 的
【賽一賽】:右3是由五個單位正方形組成的紙片,請你把
它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)
目的:進一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上
效果:加深了對“新知”的理解,鞏固了本課所學(xué)知識.
第五環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?
2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?
3.除了本課所認識的非有理數(shù)的數(shù)以外,你還能找到嗎?
目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點及數(shù)學(xué)方法,使知識系統(tǒng)化.
效果:學(xué)生總結(jié)、相互補充,學(xué)會進行概括總結(jié).
第六環(huán)節(jié):布置作業(yè)
習(xí)題2.1
六、教學(xué)設(shè)計反思
。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動力
大量事實都證明一點,與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.
。ǘ┗橄鬄榫唧w
常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.
。ㄈ⿵娀R間聯(lián)系,注意糾錯
既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學(xué)奠好基.
八年級數(shù)學(xué)的教案5
學(xué)習(xí)目標:
1. 在同一直角坐標系中,感受點的坐標變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。
2. 通過坐標的變化探索新舊圖形之間的變化。
重點:
1. 對稱軸的對稱圖形,并且能寫出所得圖形各點的坐標。
2. 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點:
1. 理解并應(yīng)用直角坐標與極坐標。
2. 解決一些簡單的問題。
學(xué)習(xí)過程:
第一課時
一、舊知回顧:
1. 平面直角坐標系定義:在平面內(nèi),兩條垂直且有公共端點的數(shù)軸組成平面直角坐標系。
2. 坐標平面內(nèi)點的坐標的表示方法是(x,y)。
3. 各象限點的坐標的特征:
第一象限:x和y坐標都是正數(shù)。第二象限:x坐標為負數(shù),y坐標為正數(shù)。第三象限:x和y坐標都是負數(shù)。第四象限:x坐標為正數(shù),y坐標為負數(shù)。
二、新知檢索:
1. 在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。
三、典例分析:
例1、
(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、
(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2) 將魚的頂點的橫坐標不變,縱坐標變成原來的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同?
四、習(xí)題組訓(xùn)練
1、在平面直角坐標系中,將點(0,0)、(2,4)、(2,0)和(4,4)連接形成一個圖案。
(1)將這四個點的縱坐標保持不變,橫坐標變成原來的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化?
(2)將縱坐標和橫坐標都增加3,所得到的圖形會發(fā)生怎樣的變化?
(3)將縱坐標和橫坐標都乘以2,所得到的圖形會發(fā)生怎樣的`變化?
歸納得出:圖形坐標變化的規(guī)律
1、平移規(guī)律
2、圖形伸縮規(guī)律
第二課時
一、已學(xué)內(nèi)容回顧:
1、軸對稱圖形的定義:如果一個圖形能夠沿著某條軸翻折成重合的兩部分,那么這個圖形就是軸對稱圖形。
2、中心對稱圖形的定義:如果一個圖形繞著某個點旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個圖形就是中心對稱圖形。
二、新學(xué)內(nèi)容引入:
1、如下圖所示,左邊的魚和右邊的魚是關(guān)于y軸對稱的。
(1) 左邊的魚可以通過平移、壓縮或拉伸來得到右邊的魚嗎?
(2) 左邊魚和右邊魚的頂點坐標之間有怎樣的關(guān)系?
(3) 如果將右邊的魚沿著x軸正方向平移1個單位長度,然后通過不改變關(guān)于y軸對稱的條件,那么左邊的魚的頂點坐標會發(fā)生怎樣的變化?
三、典型例題解析:
1、如下圖所示,右邊的魚是通過何種變換得到左邊的魚的?
2、如果將右邊魚的橫坐標保持不變,縱坐標變成原來的一倍,繪制得到的圖形與原圖形之間有何不同?
3、如果將右邊魚的縱坐標和橫坐標都變成原來的一倍,所得到的圖形和原圖形之間有何不同?
四、習(xí)題組練習(xí):
1、當(dāng)坐標發(fā)生如下變化時,圖形會做出怎樣的變化?
1、已知點位移的矩陣:
① (x,y) → (x,y + 4)
、 (x,y) → (x,y - 2)
③ (x,y) → (1/2x,y)
④ (x,y) → (3x,y)
、 (x,y) → (x,1/2y)
、 (x,y) → (3x,3y)
2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫出一個與它形狀大小完全一樣的蝴蝶,并標出它們的各個頂點坐標。
3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對稱圖形,并標出相應(yīng)端點的坐標。
4、簡要描繪圖示中楓葉圖案關(guān)于x軸對稱的軸對稱圖形。
學(xué)習(xí)筆記:
八年級數(shù)學(xué)的教案6
一.教學(xué)目標:
1.了解方差的定義和計算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計意圖:
(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的`實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
3.方差怎樣去體現(xiàn)波動大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?
測試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級數(shù)學(xué)的教案7
知識點2總體、個體、樣本
調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。
知識點3中位數(shù)的概念
將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
知識點4眾數(shù)的概念
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
所以這組數(shù)據(jù)的眾數(shù)是2和3。
【規(guī)律方法小結(jié)】
。1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
。2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
。3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
。4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
探究交流
1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
總結(jié):
。1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的`一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
。2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
。4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
課堂檢測
基本概念題
1、填空題。
。1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
。2)在某班的40名學(xué)生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,則這個班學(xué)生的平均年齡約是_________;
。3)某一學(xué)生5門學(xué)科考試成績的平均分為86分,已知其中兩門學(xué)科的總分為193分,則另外3門學(xué)科的分為________;
。4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
基礎(chǔ)知識應(yīng)用題
2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
(1)計算這10個班次乘車人數(shù)的平均數(shù);
。2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
八年級數(shù)學(xué)的教案8
教學(xué)目標
(一)教學(xué)知識點
1.經(jīng)歷探索積的乘方的運算法則的過程,進一步體會冪的意義。
2.理解積的乘方運算法則,能解決一些實際問題。
。ǘ┠芰τ(xùn)練要求
1.在探究積的乘方的運算法則的過程中,發(fā)展推理能力和有條理的表達能力。
2.學(xué)習(xí)積的乘方的運算法則,提高解決問題的能力。
。ㄈ┣楦信c價值觀要求
在發(fā)展推理能力和有條理的語言、符號表達能力的同時,進一步體會學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡潔美。
教學(xué)重點
積的乘方運算法則及其應(yīng)用。
教學(xué)難點
冪的運算法則的靈活運用。
教學(xué)方法
自學(xué)─引導(dǎo)相結(jié)合的方法。
同底數(shù)冪的乘法、冪的乘方、積的乘方成一個體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的運算方法,能解決一些實際問題。
教具準備
投影片.
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
[師]還是就上節(jié)課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?
[生]它的體積應(yīng)是V=(1.1×103)3cm3。
[師]這個結(jié)果是冪的.乘方形式嗎?
[生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來看,我認為應(yīng)是積的乘方才有道理。
[師]你分析得很有道理,積的乘方如何運算呢?能不能找到一個運算法則?有前兩節(jié)課的探究經(jīng)驗,老師想請同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。
、颍畬(dǎo)入新課
老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。
出示投影片
1.填空,看看運算過程用到哪些運算律,從運算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
。2)(ab)3=______=_______=a()b()
(3)(ab)n=______=______=a()b()(n是正整數(shù))
2.把你發(fā)現(xiàn)的規(guī)律用文字語言表述,再用符號語言表達。
3.解決前面提到的正方體體積計算問題。
4.積的乘方的運算法則能否進行逆運算呢?請驗證你的想法。
5.完成課本P170例3。
學(xué)生探究的經(jīng)過:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。
八年級數(shù)學(xué)的教案9
學(xué)習(xí)重點:函數(shù)的概念 及確定自變量的取值范圍。
學(xué)習(xí)難點:認識函數(shù),領(lǐng)會函數(shù)的意義。
【自主復(fù)習(xí)知識準備】
請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。
【自主探究知識應(yīng)用】
請看書72——74頁內(nèi)容,完成下列問題:
1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。
2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。
3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。
歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。
補充小結(jié):
(1)函數(shù)的定義:
(2)必須是一個變化過程;
(3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應(yīng)。
三、鞏固與拓展:
例1:一輛汽車的.油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。
(1)寫出表示y與x的函數(shù)關(guān)系式.
(2)指出自變量x的取值范圍.
(3) 汽車行駛200千米時,油箱中還有多少汽油?
【當(dāng)堂檢測知識升華】
1、判斷下列變量之間是不是函數(shù)關(guān)系:
(1)長方形的寬一定時,其長與面積;
(2)等腰三角形的底邊長與面積;
(3)某人的年齡與身高;
2、寫出下列函數(shù)的解析式.
(1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.
(2)汽車加油時,加油槍的流量為10L/min.
、偃绻佑颓,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數(shù)關(guān)系;
、谌绻佑蜁r,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數(shù)關(guān)系.
(3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.
(4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.
八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實際和教材的實際進行有針對性的設(shè)置,希望大家喜歡!
八年級數(shù)學(xué)的教案10
教學(xué)目標
1.等腰三角形的概念。2.等腰三角形的性質(zhì)。3.等腰三角形的概念及性質(zhì)的應(yīng)用。
教學(xué)重點:1.等腰三角形的概念及性質(zhì)。2.等腰三角形性質(zhì)的應(yīng)用。
教學(xué)難點:等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
有的三角形是軸對稱圖形,有的三角形不是。
問題:那什么樣的三角形是軸對稱圖形?
滿足軸對稱的條件的`三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。
我們這節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形。
、.導(dǎo)入新課:要求學(xué)生通過自己的思考來做一個等腰三角形。
作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形。
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
思考:
1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。
要求學(xué)生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系。
沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個底角相等。(簡寫成“等邊對等角”)
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合。(通常稱作“三線合一”)
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)。同學(xué)們現(xiàn)在就動手來寫出這些證明過程。
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求:△ABC各角的度數(shù).
分析:根據(jù)等邊對等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內(nèi)角和為180°,就可求出△ABC的三個內(nèi)角.
把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.
解:因為AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對等角).
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識.
、.隨堂練習(xí):1.課本P51練習(xí)1、2、3.2.閱讀課本P49~P51,然后小結(jié)。
、.課時小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。
我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們。
Ⅴ.作業(yè):課本P56習(xí)題12.3第1、2、3、4題。
板書設(shè)計
12.3.1.1等腰三角形
八年級數(shù)學(xué)的教案11
一、教學(xué)目標
1.使學(xué)生根據(jù)分數(shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運算。
2.使學(xué)生理解和掌握分式和減法法則,并會應(yīng)用法則進行分式加減的運算。
3.使學(xué)生能夠靈活運用分式的有關(guān)法則進行分式的四則混合運算。
4.引導(dǎo)學(xué)生不斷小結(jié)運算方法和技巧,提高運算能力。
二、教學(xué)重點和難點
1.重點:分式的加減運算。
2.難點:異分母的分式加減法運算。
三、教學(xué)方法
啟發(fā)式、分組討論。
四、教學(xué)手段
幻燈片。
五、教學(xué)過程
。ㄒ唬┮
1.如何計算:2.如何計算:3.若分母不同如何計算?如:
(二)新課
1.類比分數(shù)的通分得到分式的通分:把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
2.通分的`依據(jù):分式的基本性質(zhì)。
3.通分的關(guān)鍵:確定幾個分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
例1通分:
。1)解:∵最簡公分母是,
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù)。
。2)解:
例2通分:
(1)解:∵最簡公分母的是2x(x+1)(x—1),
小結(jié):當(dāng)分母是多項式時,應(yīng)先分解因式。
(2)解:將分母分解因式:∴最簡公分母為2(x+2)(x—2),
練習(xí):教材P,79中1、2、3。
。ㄈ┱n堂小結(jié)
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進行變形,其共同點是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。
八年級數(shù)學(xué)的教案12
教學(xué)目標:
1、掌握一次函數(shù)解析式的特點及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律
教學(xué)重點:
1、 一次函數(shù)解析式特點
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點:
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達式。
教學(xué)過程:
、瘢岢鰡栴},創(chuàng)設(shè)情境
問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.
問題2 小張準備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.
分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?
、颍畬(dǎo)入新課
上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
、賧=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);
(2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).
。5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;
。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
(7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
(5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時,y=3.
(1)寫出y與x之間的'函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時,y的值.
解 (1)因為 y與x-3成正比例,所以y=k(x-3).
又因為x=4時,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時,y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因為在只打開進油管的8分鐘內(nèi)、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
Ⅲ.隨堂練習(xí)
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不
超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
、簦n時小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時,y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計算y=-4時x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.
3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.
5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
八年級數(shù)學(xué)的教案13
一、 教學(xué)目標
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點、難點
1.重點:理解分式有意義的條件.
2.難點:能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.
2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時間,與以最大航速逆流航行60 所用時間相等,江水的流速為多少?
請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時間為小時,逆流航行60 所用時間小時,所以=.
3. 以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?
四、例題講解
P128例1. 當(dāng)下列分式中的字母為何值時,分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解
出字母的取值范圍.
[補充提問]如果題目為:當(dāng)字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補充)例2. 當(dāng)為何值時,分式的值為0?
。1) (2) (3)
[分析] 分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時,下列分式有意義?
。1) (2) (3)
3. 當(dāng)x為何值時,分式的值為0?
。1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
。1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.
。2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的'順流速度是 千米/時,輪船的逆流速度是 千米/時.
(3)x與的差于4的商是 .
2.當(dāng)x取何值時,分式 無意義?
3. 當(dāng)x為何值時,分式 的值為0?
八年級數(shù)學(xué)的教案14
教學(xué)建議
1、平行線等分線段定理
定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。
注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。
定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。
2、平行線等分線段定理的推論
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。
記憶方法:“中點”+“平行”得“中點”。
推論的用途:(1)平分已知線段;(2)證明線段的倍分。
重難點分析
本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。
本節(jié)的難點也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。
教法建議
平行線等分線段定理的引入
生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:
、購纳顚嵗,如刻度尺、作業(yè)本、柵欄、等等;
②可用問題式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進行思考、研究,然后給出平行線等分線段定理和推論。
教學(xué)設(shè)計示例
一、教學(xué)目標
1、使學(xué)生掌握平行線等分線段定理及推論。
2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養(yǎng)學(xué)生的作圖能力。
3、通過定理的變式圖形,進一步提高學(xué)生分析問題和解決問題的能力。
4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美
二、教法設(shè)計
學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析
三、重點、難點
1、教學(xué)重點:平行線等分線段定理
2、教學(xué)難點:平行線等分線段定理
四、課時安排
l課時
五、教具學(xué)具
計算機、投影儀、膠片、常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)
七、教學(xué)步驟
【復(fù)習(xí)提問】
1、什么叫平行線?平行線有什么性質(zhì)。
2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?
。ㄒ龑(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學(xué)生明確。
下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。
已知:如圖,直線 , 。
求證: 。
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。
(引導(dǎo)學(xué)生找出另一種證法)
分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的.知識即可證得 。
證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。
引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。
再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。
接下來講如何利用平行線等分線段定理來任意等分一條線段。
例 已知:如圖,線段 。
求作:線段 的五等分點。
作法:①作射線 。
、谠谏渚 上以任意長順次截取 。
、圻B結(jié) 。
、苓^點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。
、 、 、 就是所求的五等分點。
。ㄕf明略,由學(xué)生口述即可)
【總結(jié)、擴展】
小結(jié):
。╨)平行線等分線段定理及推論。
。2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。
(3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。
。4)應(yīng)用定理任意等分一條線段。
八、布置作業(yè)
教材P188中A組2、9
九、板書設(shè)計
十、隨堂練習(xí)
教材P182中1、2
八年級數(shù)學(xué)的教案15
我們聽了兩節(jié)優(yōu)秀的公開課,很成功,兩位老師精心準備,教學(xué)氛圍和諧、積極。兩位老師素質(zhì)好,基本功扎實,講授知識有深度、有廣度、有技巧。教師的形體語言親切、自然,口頭語言清晰、流暢。營造了積極、和諧的教學(xué)氛圍和平等、民主、自由的師生的關(guān)系,很好的實現(xiàn)了教師角色的轉(zhuǎn)變,為教師指導(dǎo)下學(xué)生自由地對知識探究作了很好的教學(xué)鋪墊。教師調(diào)控能力和應(yīng)變能力強、富有激情。使學(xué)生在輕松愉快的氛圍中接受知識?傮w來看比較成功,這些現(xiàn)象都是可喜的。主要體現(xiàn)在以下幾方面;
一、整個課堂設(shè)計完整、結(jié)構(gòu)緊湊、邏輯嚴密、前后呼應(yīng),準備得比較充分,能引導(dǎo)學(xué)生循序漸進,思路很清晰,講解也很到位。
二、不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類旁通。題型設(shè)計選題有針對性、典型性、層次性,亦有梯度,兩位老師都設(shè)計了分層練習(xí),作業(yè)分層設(shè)計精巧,適合滿足不同層次學(xué)生的要求。
三、兩位老師引入新課都很自然,兩位老師都能從學(xué)生的實際水平出發(fā),面向全體學(xué)生,因材施教,分層次開展教學(xué)工作,全面提高學(xué)習(xí)效率。
教師在整個教學(xué)過程中老師敢于讓學(xué)生探索、體驗,給了學(xué)生以最大的自由運用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學(xué)中,通過教師有序的導(dǎo)、學(xué)生積極的.學(xué)習(xí)參與、體驗、討論與交流,培養(yǎng)學(xué)生具有主動、負責(zé)、開拓、創(chuàng)新的個性特征和科學(xué)的思維方式。將知識與技能,過程與方法,情感態(tài)度和價值觀完美結(jié)合。在整個教學(xué)活動中始終面對全體學(xué)生,讓每一個學(xué)生都有收獲,都得到成功的體驗,充分體現(xiàn)了全面育人的新課標精神。建議新塘二中老師盡量少講,讓學(xué)生多思,多想,多做。 ......
【八年級數(shù)學(xué)的教案】相關(guān)文章:
數(shù)學(xué)八年級上冊教案03-02
八年級數(shù)學(xué)的教案12-30
有關(guān)八年級數(shù)學(xué)教案八年級數(shù)學(xué)教案全套10-03
八年級數(shù)學(xué)教案03-05
八年級數(shù)學(xué)復(fù)習(xí)教案01-06
八年級數(shù)學(xué)下冊教案05-16
八年級數(shù)學(xué)下冊教案01-10
八年級數(shù)學(xué)教案12-04