亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

八年級(jí)數(shù)學(xué)教案

時(shí)間:2021-03-07 08:22:26 數(shù)學(xué)教案 我要投稿

精選八年級(jí)數(shù)學(xué)教案匯編7篇

  作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常需要用到教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么寫教案需要注意哪些問題呢?下面是小編幫大家整理的八年級(jí)數(shù)學(xué)教案7篇,希望能夠幫助到大家。

精選八年級(jí)數(shù)學(xué)教案匯編7篇

八年級(jí)數(shù)學(xué)教案 篇1

  教學(xué)目標(biāo):

  情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。

  能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

  認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

  教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):等腰梯形性質(zhì)的探索;

  難點(diǎn):梯形中輔助線的添加。

  教學(xué)課件:PowerPoint演示文稿

  教學(xué)方法:啟發(fā)法、

  學(xué)習(xí)方法:討論法、合作法、練習(xí)法

  教學(xué)過程:

  (一)導(dǎo)入

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

  結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)

  6、特殊梯形的分類:(投影)

 。ǘ┑妊菪涡再|(zhì)的探究

  【探究性質(zhì)一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。

  【操練】

 。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

  (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質(zhì)二】

  如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。

  【探究性質(zhì)三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)

  問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)

  等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等

  (三)質(zhì)疑反思、小結(jié)

  讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

  學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級(jí)數(shù)學(xué)教案 篇2

  一、教學(xué)目的

  1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.

  2.使學(xué)生會(huì)用描點(diǎn)法畫出簡單函數(shù)的圖象.

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.

  2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.

  難點(diǎn):在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問題.

  三、教學(xué)過程

  復(fù)習(xí)提問

  1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

  3.說出下列各點(diǎn)所在象限或坐標(biāo)軸:

  新課

  1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟:

  (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.

  一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來.

  (2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).

  (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.

  一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).

  2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0.5的圖象.

  小結(jié)

  本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖.

  練習(xí)

 、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)

 、谘a(bǔ)充題:畫出函數(shù)y=5x-2的圖象.

  作業(yè)

  選用課本習(xí)題.

  四、教學(xué)注意問題

  1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.

  2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性.

  3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.

八年級(jí)數(shù)學(xué)教案 篇3

  一、教學(xué)目標(biāo):

  1、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題

  2、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值

  3、會(huì)運(yùn)用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí)

  二、重點(diǎn)、難點(diǎn):

  1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  三、教學(xué)過程:

  1、復(fù)習(xí)

  組中值的定義:上限與下限之間的中點(diǎn)數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2.

  因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義.

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計(jì)算量.

  為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義.

  2、教材P140探究欄目的意圖

 、、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法.

  ②、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).

  這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.

  3、教材P140的思考的意圖.

 、、使學(xué)生通過思考這兩個(gè)問題過程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問題.

  ②、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.

  4、利用計(jì)算器計(jì)算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比.一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時(shí)也說明在今后中考趨勢仍是不允許使用計(jì)算器.所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡單.統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了.

  5、運(yùn)用樣本估計(jì)總體

  要使學(xué)生掌握在哪些情況下需要通過用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí);一是所要考察的對(duì)象很多,二是考察本身帶有破壞性;教材P142例3,這個(gè)例子就屬于考察本身帶有破壞性的情況.

八年級(jí)數(shù)學(xué)教案 篇4

  課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。

  【典型例題】

  例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯(cuò)答: B

  正解: C

  錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯(cuò)解 :B

  正解:D

  錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

  錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

  錯(cuò)解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

  錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯(cuò)因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的'整數(shù)根。

  錯(cuò)解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。

 。1)求k的取值范圍;

  (2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

  (2)存在。

  如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

  ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。

  解:上面解法錯(cuò)在如下兩個(gè)方面:

 。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

  解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

 。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

  又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

  1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

  2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

  3、條件多面時(shí)(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。

  求證:關(guān)于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個(gè)根為1,求m的值。

 。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請(qǐng)說明理由。

  3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級(jí)數(shù)學(xué)教案 篇5

  一、 教學(xué)目標(biāo)

  1.了解分式、有理式的概念.

  2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):理解分式有意義的條件.

  2.難點(diǎn):能熟練地求出分式有意義的條件.

  三、課堂引入

  1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.

  2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?

  請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.

  設(shè)江水的流速為v /h.

  輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.

  3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?

  四、例題講解

  P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.

  [分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解

  出字母的取值范圍.

  [補(bǔ)充提問]如果題目為:當(dāng)字母為何值時(shí),分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.

  (補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?

 。1) (2) (3)

  [分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 當(dāng)x取何值時(shí),下列分式有意義?

 。1) (2) (3)

  3. 當(dāng)x為何值時(shí),分式的值為0?

 。1) (2) (3)

  六、課后練習(xí)

  1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

 。1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).

 。2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).

  (3)x與的差于4的商是 .

  2.當(dāng)x取何值時(shí),分式 無意義?

  3. 當(dāng)x為何值時(shí),分式 的值為0?

八年級(jí)數(shù)學(xué)教案 篇6

  菱形

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1.經(jīng)歷探索菱形的識(shí)別方法的過程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

  2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

  補(bǔ)充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

  例2.如圖,平行四邊形ABCD的對(duì) 角線AC的垂直平分線與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

  (1)試說明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線段EF的長;

  (3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時(shí),四邊形AECG是菱形.

  課后續(xù)助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

  2.如圖 ,平行四邊形A BCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請(qǐng)說明理由。

  4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

  ⑴求證:ABF≌

 、迫魧⒄郫B的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

八年級(jí)數(shù)學(xué)教案 篇7

  一、學(xué)習(xí)目標(biāo):

  1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語言敘述;

  2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。

  二、學(xué)習(xí)過程:

  請(qǐng)同學(xué)們快速閱讀課本第27—28頁的內(nèi)容,并完成下面的練習(xí)題:

 。ㄒ唬┨剿

  1、計(jì)算: (a - b) =

  方法一: 方法二:

  方法三:

  2、兩數(shù)差的平方用式子表示為_________________________;

  用文字語言敘述為___________________________ 。

  3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?

 。ǘ┈F(xiàn)學(xué)現(xiàn)用

  利用兩數(shù)差的平方公式計(jì)算:

  1、(3 - a) 2、 (2a -1) 3、(3y-x)

  4、(2x – 4y) 5、( 3a - )

  (三)合作攻關(guān)

  靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:

  1、(999) 2、( a – b – c )

  3、(a + 1) -(a-1)

  (四)達(dá)標(biāo)訓(xùn)練

  1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

  A、a -2ab + 4b B、a -4b

  C、a +4b D、 a - 4ab +4b

  2、填空:

  (1)9x + + 16y = (4y - 3x )

  (2) ( ) = m - 8m + 16

  2、計(jì)算:

 。 a - b) ( x -2y )

  3、有一邊長為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?

  (四)提升

  1、本節(jié)課你學(xué)到了什么?

  2、已知a – b = 1,a + b = 25,求ab 的值

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)數(shù)學(xué)教案01-10

精選八年級(jí)數(shù)學(xué)教案四篇03-10

八年級(jí)數(shù)學(xué)教案8篇03-11

八年級(jí)數(shù)學(xué)教案7篇03-08

【精選】八年級(jí)數(shù)學(xué)教案四篇03-11

八年級(jí)數(shù)學(xué)教案4篇02-26

精選八年級(jí)數(shù)學(xué)教案6篇02-26

精選八年級(jí)數(shù)學(xué)教案4篇03-01

精選八年級(jí)數(shù)學(xué)教案三篇03-06

【精選】八年級(jí)數(shù)學(xué)教案3篇03-05