亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

全等三角形教案

時間:2022-11-09 19:01:06 其它教案 我要投稿

全等三角形教案

  作為一名教師,通常需要準備好一份教案,教案是教學活動的依據(jù),有著重要的地位。那么優(yōu)秀的教案是什么樣的呢?下面是小編整理的全等三角形教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

全等三角形教案

全等三角形教案1

  〖教學目標〗

  ◆1、探索兩個直角三角形全等的條件.

  ◆2、掌握兩個直角三角形全等的條件(hl).

  ◆3、了解角平分線的性質(zhì):角的內(nèi)部,到角兩邊距離相等的點,在角平分線上,及其簡單應用.

  〖教學重點與難點〗

  ◆教學重點:直角三角形全等的判定的方法“hl”.

  ◆教學難點:直角三角形判定方法的說理過程.

  〖教學過程〗

  一、創(chuàng)設(shè)情境,引入新課:

  教師演示一等腰三角形,沿底邊上高裁剪,讓同學們觀察兩個三角形是否全等?

  二、合作學習:

  1.回顧:判定兩個直角三角形全等已經(jīng)有哪些方法?

  2.有斜邊和一條直角邊對應相等的兩個三角形全等嗎?如何會全等,教師可啟發(fā)引導學生一起利用畫圖,疊合方法探索說明兩個直角三角形全等的判定方法,可充分讓學生想象。不限定方法。

  “斜邊和一條直角邊對應相等的兩個直角三角形全等(hl)。”

  教師歸納出方法后,要學生注意兩點:

  <1>“hl”是僅適用于rt△的特殊方法。

  三、應用新知,鞏固概念

  例:已知:p是∠aob內(nèi)一點,pd⊥oa,pe ⊥ob,d,e分別是垂足,且pd=pe,則點p在∠aob的平分線上,請說明理由。

  分析:引導猜想可能存在的rt△;構(gòu)造兩個全等的rt△;要說明p在∠aob的平分線上,只要說明∠dop=∠eop

  小結(jié):角平分線的又一個性質(zhì):(判定一個點是否在一個角的平分線上的方法)

  角的.內(nèi)部,到角的兩邊距離相等的點,在這個角的平分線上。

  四、學生練習,鞏固提高

  練一練:課本p82課內(nèi)練習

  五、小結(jié)回顧,反思提高

 。1)你認為有沒有其他的方法可以證明直角三角形全等(勾股定理)?

 。2)你現(xiàn)在知道的有關(guān)角平分線的知識有哪些?

  六、作業(yè):

  1.作業(yè)本2.82.課后作業(yè)

全等三角形教案2

  教學目標 :

  1、知識目標:

 。1)熟記邊角邊公理的內(nèi)容;

 。2)能應用邊角邊公理證明兩個三角形全等.

  2、能力目標:

  (1) 通過“邊角邊”公理的運用,提高學生的邏輯思維能力;

  (2) 通過觀察幾何圖形,培養(yǎng)學生的識圖能力.

  3、情感目標:

  (1) 通過幾何證明的教學,使學生養(yǎng)成尊重客觀事實和形成質(zhì)疑的習慣;

  (2) 通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受,培養(yǎng)學生勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧.教學重點:學會運用公理證明兩個三角形全等.

  教學難點 :在較復雜的圖形中,找出證明兩個三角形全等的條件.

  教學用具:直尺、微機

  教學方法:自學輔導式

  教學過程 :

  1、公理的發(fā)現(xiàn)

  (1)畫圖:(投影顯示)

  教師點撥,學生邊學邊畫圖.

 。2)實驗

  讓學生把所畫的 剪下,放在原三角形上,發(fā)現(xiàn)什么情況?(兩個三角形重合)

  這里一定要讓學生動手操作.

  (3)公理

  啟發(fā)學生發(fā)現(xiàn)、總結(jié)邊角邊公理:有兩邊和它們的夾角對應相等的`兩個三角形全等(簡寫成“邊角邊”或“sas”)

  作用:是證明兩個三角形全等的依據(jù)之一.

  應用格式:

  強調(diào):

  1、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論.

  2、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊,公共角、對頂角、鄰補角、外角、平角等)所以找條件歸結(jié)成兩句話:已知中找,圖形中看.

  3、平面幾何中常要證明角相等和線段相等,其證明常用方法:

  證角相等――對頂角相等;同角(或等角)的余角(或補角)相等;兩直線平行,同位角相等,內(nèi)錯角相等;角平分線定義;等式性質(zhì);全等三角形的對應角相等地.

  證線段相等的方法――中點定義;全等三角形的對應邊相等;等式性質(zhì).

  2、公理的應用

 。1)講解例1.學生分析完成,教師注重完成后的總結(jié).

  分析:(設(shè)問程序)

  “sas”的三個條件是什么?

  已知條件給出了幾個?

  由圖形可以得到幾個條件?

  解:(略)

  (2)講解例2

  投影例2:

  例2如圖2,ae=cf,ad∥bc,ad=cb,

  求證:

  學生思考、分析,適當點撥,找學生代表口述證明思路

  讓學生在練習本上定出證明,一名學生板書.教師強調(diào)

  證明格式:用大括號寫出公理的三個條件,最后寫出

  結(jié)論.

  (3)講解例3(投影)

  證明:(略)

  學生分析思路,寫出證明過程.

  (投影展示學生的作業(yè) ,教師點評)

 。4)講解例4(投影)

  證明:(略)

  學生口述過程.投影展示證明過程.

  教師強調(diào)證明線段相等的幾種常見方法.

 。5)講解例5(投影)

  證明:(略)

  學生思考、分析、討論,教師巡視,適當參與討論.

  師生共同討論后,讓學生口述證明思路.

  教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明.

  3、課堂小結(jié):

  (1)判定三角形全等的方法:sas

  (2)公理應用的書寫格式

  (3)證明線段、角相等常見的方法有哪些?

  讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu).

  6、布置作業(yè)

  a書面作業(yè) p56#6、7

  b上交作業(yè) p57b組1

  思考題:

  板書設(shè)計 :

全等三角形教案3

  教學目標:

  1了解全等形及全等三角形的的概念;

  2 理解全等三角形的性質(zhì)

  3 在圖形變換以及實際操作的過程中發(fā)展學生的空間觀念,培養(yǎng)學生的'幾何直覺,

  重點:探究全等三角形的性質(zhì)

  難點:準確的找出兩個全等三角形的對應邊,對應角

  教學過程:觀察圖案,指出這些圖案中中形狀與大小相同的圖形。

  獲取概念:全等形、全等三角形、對應邊、對應角、對應頂點 。

  全等形:形狀、大小相同的圖形放在一起能夠完全重合,能夠完全重合的

  兩個圖形叫做全等形。

  一個圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,即平移、翻折、旋轉(zhuǎn)前后的圖形全等。

  全等三角形:能夠完全重合的兩個三角形叫做全等三角形。

  “全等”用?表示,讀作“全等于”

  注意:兩個三角形全等時,通常把表示對應頂點的字母寫在對應的位置上,如△ abc ≌ △def全等時,點a和點d,點b和點e,點c和點f是對應頂點,記作△ abc ≌ △def

  把兩個全等的三角形重合到一起,重合的頂點叫做對應頂點,重合的邊叫做對應邊,重合的角叫做對應角。通過練習得出對應邊,對應角間的關(guān)系。

  即全等三角形性質(zhì):全等三角形的對應邊相等;

  全等三角形的對應角相等。

  練習1.2.3.4

  小結(jié):形狀、大小相同的圖形放在一起能夠完全重合,能夠完全重合的兩個圖

  形叫做全等形。能夠完全重合的兩個三角形叫做全等三角形。

  全等三角形性質(zhì):全等三角形的對應邊相等;

  全等三角形的對應角相等。

  表示三角形全等時應注意什么?

全等三角形教案4

  教學目標

  一、知識與技能

  1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。

  2、能正確表示兩個全等三角形,能找出全等三角形的對應元素。

  二、過程與方法

  通過觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動,來感知兩個三角形全等,以及全等三角形的性質(zhì)。

  三、情感態(tài)度與價值觀

  通過全等形和全等三角形的學習,認識和熟悉生活中的全等圖形,認識生活和數(shù)學的關(guān)系,激發(fā)學生學習數(shù)學的興趣。

  教學重點

  1、全等三角形的性質(zhì)。

  2、在通過觀察、實際操作來感知全等形和全等三角形的基礎(chǔ)上,形成理性認識,理解并掌握全等三角形的對應邊相等,對應角相等。

  教學難點正確尋找全等三角形的對應元素

  教學關(guān)鍵通過拼圖、對三角形進行平移、旋轉(zhuǎn)、翻折等活動,讓學生在動手操作的過程中,感知全等三角形圖形變換中的對應元素的變化規(guī)律,以尋找全等三角形的對應點、對應邊、對應角。

  課前準備:教師------課件、三角板、一對全等三角形硬紙版 學生------白紙一張硬紙三角形一個

  教學過程設(shè)計

  一、 全等形和全等三角形的概念

  (一)導課:教師----(演示課件)廬山風景,以詩"橫看成嶺側(cè)成峰,遠近高低各不同,不識廬山真面目,只緣身在此山中"指出大自然中廬山的唯一性,但是我們可以通過攝影把廬山的美景拍下來,可以洗出千萬張一模一樣的廬山相片。

  (二)全等形的定義

  象這樣的圖片,形狀和大小都相同。你還能說一說自己身邊還有哪些形狀和大小都相同的圖形嗎?[學生舉例,集體評析]

  動手操作1---在白紙上任意撕一個圖形,觀察這個圖形和紙上的空心部分的圖形有什么關(guān)系?你怎么知道的?

  [板書:能夠完全重合]

  命名:給這樣的圖形起個名稱----全等形。[板書:全等形]

  剛才大家所舉的各種各樣的形狀大小都相同的圖形,放在一起也能夠完全重合,這樣的圖形也都是全等形。

  (三)全等三角形的定義

  動手操作2---制作一個和自己手里的三角形能夠完全重合的三角形。

  定義全等三角形:能夠完全重合的兩個三角形,叫全等三角形。

  [板書課題:13.1全等三角形,]

  (四)出示學習目標

  1. 知道什么是全等形,什么是全等三角形。

  2. 能夠找出全等三角形的對應元素。

  3.會正確表示兩個全等三角形。

  4.掌握全等三角形的性質(zhì)。

  二、 全等三角形的對應元素及表示

  (一)自學課本:91頁的 內(nèi)容(時間5分鐘)可以在小組內(nèi)交流。

  (二)檢測:

  1.動手操作

  以課本p91頁的思考的操作步驟,抽三個學生上黑板完成(即把三角形平移、翻折、旋轉(zhuǎn)后得到新的三角形)

  思考:把三角形平移、翻折、旋轉(zhuǎn)后,什么發(fā)生了變化,什么沒有變?

  歸納:旋轉(zhuǎn)前后的兩個三角形,位置變化了,但形狀大小都沒有變,它們依然全等。

  2.全等三角形中的對應元素

  (以黑板上的圖形為例,圖一、圖二、三學生獨立找,集體交流)

  (1)對應的頂點(三個)---重合的.頂點

  (2)對應邊(三條)---重合的邊

  (3)對應角(三個)--- 重合的角

  圖一(平移)

  圖二 (翻折)圖三(旋轉(zhuǎn))

  歸納:方法一---全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;方法二:全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。

  另外:有公共邊的,公共邊一定是對應邊;有對頂角的,對頂角一定是對應角。

  3.用符號表示全等三角形

  抽學生表示圖一、圖二、三的全等三角形。

  4.全等三角形的性質(zhì)

  思考:全等三角形的對應邊、對應角有什么關(guān)系?為什么?

  歸納:全等三角形的對應邊相等、對應角相等。

  請寫出平移、翻折后兩個全等三角形中相等的角,相等的邊。

  三、 課堂訓練

  1.下面的每對三角形分別全等,觀察是怎么變化而成的,說出對應邊、對應角。

  2.將△abc沿直線bc平移,得到△def(如圖)

  (1) 線段ab、de是對應線段,有什么關(guān)系?線段ac和df呢?

  (2) 線段be和cf有什么關(guān)系?為什么?

  (3)若∠a=50?,∠b=30?,你知道其他各角的度數(shù)嗎?為什么?

  3.議一議:△abe≌△acd,ab與ac,ad與ae是對應邊,∠a=40?,∠b=30?,求∠adc的大小。

  四、小結(jié):學生填寫《課堂學習評價卡》并交流。

  五、作業(yè):課本92頁習題13.1第2題、3題、4題。

  板書設(shè)計:全等三角形對應元素

  全等形全等三角形全等三角形性質(zhì)

【全等三角形教案】相關(guān)文章:

數(shù)學全等三角形教案12-30

“全等三角形的條件”教案12-17

三角形全等的判定教案08-31

全等三角形12-08

全等三角形教案15篇02-07

數(shù)學三角形全等的判定3教案06-27

全等三角形教學反思11-04

《全等三角形》教學反思11-04

三角形全等的判定說課12-10