亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

費馬大定理證明過程

時間:2023-05-01 08:10:14 證明 我要投稿
  • 相關推薦

費馬大定理證明過程

費馬大定理證明過程

費馬大定理證明過程

原命題:Xn+Yn=Zn(其中X、Y、Z都是非零數(shù))當n為大于2的正整數(shù)時X、Y、Z,不可能都是正整數(shù)。

證明步驟如下:我們只要證明當n為大于2的正整數(shù)時,X、Y、Z,不可能都是非零的有理數(shù),原命題自然成立。

對于Xn+Yn=Zn來說如果等式二邊無論如何都找不到有理對應關系,那么他們還有理數(shù)解嗎?我們知道等式二邊所有對應關系可列成下面三種情況。

1、Xn+ Yn=Zn 2、Xn=Zn-Yn 3、Yn=Zn-Xn

分析第一種情況 Xn+ Yn=Zn

當n等于3時,X3+ Y3=Z3

一方面由于等式左邊y不管取何非零值,都只能分解成關于X的二個有理因式,即:X3+ Y3=(X+ Y)(X2+XY+ Y2)

另一方面,如果存在有理數(shù)解則X與Z之間必可通過有理置換,

如:Z=X+某數(shù)形式

即:等式右邊Z3=(X+某數(shù))(X+某數(shù))(X+某數(shù))三個因式 這樣,等式一邊永遠無法變成X三個有理因式,等式另一邊總是可以變成X三個有理因式,因此出現(xiàn)了矛盾。

分析第二種情況 Xn=Zn-Yn

當n等于3時 X3=Z3-Y3

一方面由于等式右邊Y不管取何非零值,都只能分解成關于Z的二個有理因式,

即:

右邊Z3-Y3 =(Z-Y)(Z2+ZY+Y2 )二個有理因式

另一方面,如果存在有理數(shù)解則Z與X之間必可通過有理置換,

如:X=Z-有理數(shù)

等式左邊X3=(Z-有理數(shù))(Z-有理數(shù))(Z-有理數(shù))三個因式

這樣,等式一邊永遠無法變成Z三個有理因式,等式另一邊總是可以變成Z的三個有理因式,因此出現(xiàn)了矛盾。

第三種情況和第二種情況是相似的。 也就是說X、Y、Z為非零數(shù)時,所有的排列,都找不到等式二邊會有理對應關系,因此當n等于3時X、Y、Z不可能都是有理數(shù),更談不上是整數(shù)。

當n=4時則Xn+Yn=Zn變成X4+Y4=Z4所有的排列有下面3種:

1、X4+ Y4=Z4

2、 X4=Z4-Y4 3、 Y4=Z4-X4

分析第一種情況,1、X4+ Y4=Z4 一方面由于等式左邊y不管取何非零值,都只能分

解成關于X的一個有理因式,另一方面,如果存在有理數(shù)解則X與Z之間必可通過有理置換,如Z=X+有理數(shù)

等式右邊Z4=(X+有理數(shù))(X+有理數(shù))(X+有理數(shù))(X+有理數(shù))四個有理因式。 這樣,等式一邊永遠無法變成X四個有理因式,等式另一邊總是可以變成X四個有理因式,因此出現(xiàn)了矛盾。

分析第二種情況,2、X4=Z4-Y4

一方面由于等式右邊Y不管取何非零值,都只能分解成關于Z的三個有理因式即:Z4

-Y4 =(Z-Y)(Z+Y)(Z2+Y2) 另一方面,如果存在有理數(shù)解則Z與X之間必可通過有理置換如:X=Z-有理數(shù)

等式左邊X4=(Z-有理數(shù))(Z-有理數(shù))(Z-有理數(shù))(Z-有理數(shù))四個有理因式這樣,等式一邊永遠無法變成Z四個有理因式,等式另一邊總是可以變成Z的四個有理因式,因此出現(xiàn)了矛盾。

由此法不難類推,當n等于其他大于2的整數(shù)時,等于二邊也無法有有理對應關費馬大定理證明過程系。 所以費馬的結論是對的。

【費馬大定理證明過程】相關文章:

定理與證明教案12-28

樹上隨機過程的強極限定理05-01

隨機環(huán)境中分枝過程的等價定理04-27

余弦定理的證明方法04-28

垂心余弦定理證明04-28

耐得真寂寞成就大學問--記攻克費馬大定理的數(shù)學家維爾斯04-27

關于隨機環(huán)境分枝過程存活概率的幾個定理04-30

(精選)誤工費收入證明12-09

誤工費收入證明02-26

靜電場環(huán)路定理的非抵消法證明04-28