亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

《完全平方公式》教案

時間:2024-06-03 12:56:21 教案 我要投稿

《完全平方公式》教案

  作為一名人民教師,常常要根據(jù)教學需要編寫教案,教案是教學活動的依據(jù),有著重要的地位。教案應(yīng)該怎么寫才好呢?下面是小編幫大家整理的《完全平方公式》教案,歡迎大家分享。

《完全平方公式》教案

《完全平方公式》教案1

  一、教學目標

 。1)知識與技能;學生通過推導完全平方公式,掌握公式結(jié)構(gòu),能計算。

 。2)過程與方法目標;學生探究完全平方公式,體會數(shù)形結(jié)合。

  二、教學重點:

公式結(jié)構(gòu)及運用。

  三、教學難點:

公式中字母AB的含義理解與公式正確運用。

  四、教具:

自制長方形、正方形卡片

  五、教學過程:

  活動

  學生活動

  1、創(chuàng)設(shè)情景,提出問題,引入課題

 。1)想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

 。1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

 。2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

 。3)第三天,()個孩子一起去看望老人,老人共給他們多少塊糖?

 。4)第三天比前二天的孩子得到糖總數(shù)哪個多?多多少?為什么?(分組討論)

學生四人一組討論。

  填空:

 。1)第一天給孩子塊糖。

 。2)第二天給孩子塊糖。

 。3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  活動

  學生活動

 。2)做一做、請同學拼圖

  教師巡視指導學生拼圖

  1、教師提問:

 。1)大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?

  2、想一想

 。1)(a+b)用多項式乘法法則說明

 。2)(a—b)

  3、請同學們自己敘述上面的`等式

  4、說一說,ab能表示什么?

 。ā+○)□+2□○+○

  5、算一算

  (1)(2X—3)(2)(4X+5Y)

  請同學們分清ab

  6、練一練

 。1)(2X—3Y)(2)(2XY—3X)

  7、試一試(a+b+c)

  作業(yè):P1351、2

  學生2人一組拼圖交流

  2、學生觀察思考

 。1)大正方形邊長?

 。2)四塊卡片的。面積分別是

 。3)大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

 。╝+b)=a+2ab+b說出每一步運算理由

 。2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應(yīng)項教師書寫

  6、學生獨立完成練一練展示結(jié)果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

《完全平方公式》教案2

  教學目標:完全平方公式的推導及其應(yīng)用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養(yǎng)學生的思維條理性和表達能力.

  教學重點與難點:完全平方公式的推導過程、結(jié)構(gòu)特點、幾何解釋,靈活應(yīng)用.

  教學過程:

  一、提出問題,學生自學

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的形式呢?(a+b)2的`運算結(jié)果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

 。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

 。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學生討論,教師歸納,得出結(jié)果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結(jié)果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的二倍(1)(2)之間只差一個符號.

  推廣:計算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

  二、幾何分析

  你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數(shù)學上冊《完全平方公式》教案教案《新人教版八年級數(shù)學上冊《完全平方公式》教案》,來自網(wǎng)!

《完全平方公式》教案3

  1.能根據(jù)多項式的乘法推導出完全平方公式;(重點)

  2.理解并掌握完全平方公式,并能進行計算.(重點、難點)

  一、情境導入

  計算:

  (1)(x+1)2; (2)(x-1)2;

  (3)(a+b)2; (4)(a-b)2.

  由上述計算,你發(fā)現(xiàn)了什么結(jié)論?

  二、合作探究

  探究點:完全平方公式

  【類型一】 直接運用完全平方公式進行計算

  利用完全平方公式計算:

  (1)(5-a)2;

  (2)(-3-4n)2;

  (3)(-3a+b)2.

  解析:直接運用完全平方公式進行計算即可.

  解:(1)(5-a)2=25-10a+a2;

  (2)(-3-4n)2=92+24n+16n2;

  (3)(-3a+b)2=9a2-6ab+b2.

  方法總結(jié):完全平方公式:(a±b)2=a2±2ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”.

  變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第12題

  【類型二】 構(gòu)造完全平方式

  如果36x2+(+1)x+252是一個完全平方式,求的值.

  解析:先根據(jù)兩平方項確定出這兩個數(shù),再根據(jù)完全平方公式確定的值.

  解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

  方法總結(jié):兩數(shù)的平方和加上或減去它們積的2倍,就構(gòu)成了一個完全平方式.注意積的2倍的符號,避免漏解.

  變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第4題

  【類型三】 運用完全平方公式進行簡便計算

  利用完全平方公式計算:

  (1)992; (2)1022.

  解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開計算.(2)可把102分成100+2,然后根據(jù)完全平方公式計算.

  解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

  (2)1022=(100+2)2=1002+2×100×2+4=10404.

  方法總結(jié):利用完全平方公式計算一個數(shù)的平方時,先把這個數(shù)寫成整十或整百的數(shù)與另一個數(shù)的和或差,然后根據(jù)完全平方公式展開計算.

  變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第13題

  【類型四】 靈活運用完全平方公式求代數(shù)式的值

  若(x+)2=9,且(x-)2=1.

  (1)求1x2+12的值;

  (2)求(x2+1)(2+1)的值.

  解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.

  解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;

  (2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.

  方法總結(jié):所求的展開式中都含有x或x+時,我們可以把它們看作一個整體代入到需要求值的代數(shù)式中,整體求解.

  變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第9題

  【類型五】 完全平方公式的幾何背景

  我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來解釋一些代數(shù)恒等式.例如圖甲可以用來解釋(a+b)2-(a-b)2=4ab.那么通過圖乙面積的計算,驗證了一個恒等式,此等式是( )

  A.a(chǎn)2-b2=(a+b)(a-b)

  B.(a-b)(a+2b)=a2+ab-2b2

  C.(a-b)2=a2-2ab+b2

  D.(a+b)2=a2+2ab+b2

  解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故選C.

  方法總結(jié):通過幾何圖形面積之間的數(shù)量關(guān)系對完全平方公式做出幾何解釋.

  變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第7題

  【類型六】 與完全平方公式有關(guān)的探究問題

  下表為楊輝三角系數(shù)表,它的作用是指導讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開式的系數(shù),請你仔細觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數(shù).

  (a+b)1=a+b,

  (a+b)2=a2+2ab+b2,

  (a+b)3=a3+3a2b+3ab2+b3,

  則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.

  解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項展開式的系數(shù)除首尾兩項都是1外,其余各項系數(shù)都等于(a+b)n-1的相鄰兩個系數(shù)的和,由此可得(a+b)4的'各項系數(shù)依次為1、4、6、4、1;(a+b)5的各項系數(shù)依次為1、5、10、10、5、1;因此(a+b)6的系數(shù)分別為1、6、15、20、15、6、1,故填20.

  方法總結(jié):對于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.

  變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第10題

  三、板書設(shè)計

  1.完全平方公式

  兩個數(shù)的和(或差)的平方,等于這兩個數(shù)的平方和加(或減)這兩個數(shù)乘積的2倍.

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  2.完全平方公式的運用

  本節(jié)課通過多項式乘法推導出完全平方公式,讓學生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯誤:(a+b)2=a2+b2,(a-b)2=a2-b2.為幫助學生記憶完全平方公式,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學中,教師可通過判斷正誤等習題強化學生對完全平方公式的理解記憶。

《完全平方公式》教案4

  一、內(nèi)容簡介

  本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

  關(guān)鍵信息:

  1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  2、用標準的數(shù)學語言得出結(jié)論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。

  二、學習者分析:

  1、在學習本課之前應(yīng)具備的基本知識和技能:

 、偻愴椀亩x。

  ②合并同類項法則

 、鄱囗検匠艘远囗検椒▌t。

  2、學習者對即將學習的內(nèi)容已經(jīng)具備的水平:

  在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

  三、教學/學習目標及其對應(yīng)的課程標準:

 。ㄒ唬┙虒W目標:

  1、經(jīng)歷探索完全平方公式的'過程,進一步發(fā)展符號感和推力能力。

  2、會推導完全平方公式,并能運用公式進行簡單的計算。

 。ǘ┲R與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。

 。ㄋ模┙鉀Q問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

 。ㄎ澹┣楦信c態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。

  四、教育理念和教學方式:

  1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

  教學是師生交往、積極互動、共同發(fā)展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

  2、采用“問題情景—探究交流—得出結(jié)論—強化訓練”的模式展開教學。

  3、教學評價方式:

 。1)通過課堂觀察,關(guān)注學生在觀察、總結(jié)、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。

 。2)通過判斷和舉例,給學生更多機會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調(diào)查教學。

 。3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預(yù)期的教學效果。

  五、教學媒體:多媒體

  六、教學和活動過程:

  教學過程設(shè)計如下:

  〈一〉、提出問題

  [引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

  (2m+3n)2=xxxxxxxxx,(-2m-3n)2=xxxxxx,(2m-3n)2=xxxxxxxxx,(-2m+3n)2=xxxxxxxxx。

  〈二〉、分析問題

  1、[學生回答]分組交流、討論

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2,(-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特點。

  (2)結(jié)果的項數(shù)特點。

 。3)三項系數(shù)的特點(特別是符號的特點)。

 。4)三項與原多項式中兩個單項式的關(guān)系。

  2、[學生回答] 總結(jié)完全平方公式的。語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  3、[學生回答]完全平方公式的數(shù)學表達式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、運用公式,解決問題

  1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

  (m+n)2=xxxxxxxxx, (m-n)2=xxxxxxxxx,(-m+n)2=xxxxxxxxx, (-m-n)2=xxxxxx,(a+3)2=xxxxxx, (-c+5)2=xxxxxx,(-7-a)2=xxxxxx, (0.5-a)2=xxxxxx.

  2、判斷:

 。)① (a-2b)2= a2-2ab+b2

 。)② (2m+n)2= 2m2+4mn+n2

 。)③ (-n-3m)2= n2-6mn+9m2

 。)④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ()⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

 。)⑥ (-a-2b)2=(a+2b)2

 。)⑦ (2a-4b)2=(4a-2b)2

 。)⑧ (-5m+n)2=(-n+5m)2

  3、小試牛刀

  ① (x+y)2 =xxxxxx;② (-y-x)2 =xxxxxxxxx;

 、 (2x+3)2 =xxxxxxxxx_;④ (3a-2)2 =xxxxxxxxx;

 、 (2x+3y)2 =xxxxxxxxx;⑥ (4x-5y)2 =xxxxxx;

 、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =xxxxxxxxx_.

  〈四〉、[學生小結(jié)]

  你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

 。3)中間項的符號由等號左邊的兩項符號是否相同決定。

 。4)中間項是等號左邊兩項乘積的2倍。

  〈五〉、冒險島:

 。1)(-3a+2b)2=xxxxxxxxxxxxxxxxxx__

  (2)(-7-2m) 2 =xxxxxxxxxxxxxxxxxx____

 。3)(-0.5m+2n) 2=xxxxxxxxxxxxxxxxxx_

  (4)(3/5a-1/2b) 2=xxxxxxxxxxxxxxxxxx__

 。5)(mn+3) 2=xxxxxxxxxxxxxxxxxx____

  (6)(a2b-0.2) 2=xxxxxxxxxxxxxxxxxx___

 。7)(2xy2-3x2y) 2=xxxxxxxxxxxxxxxxxx_

 。8)(2n3-3m3) 2=xxxxxxxxxxxxxxxxxx__

  〈六〉、學生自我評價

  [小結(jié)]通過本節(jié)課的學習,你有什么收獲和感悟?

  本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結(jié)協(xié)作共同取得了進步。

  〈七〉[作業(yè)] P34隨堂練習P36習題

  七、課后反思

  本節(jié)課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應(yīng)注重讓學生總結(jié)公式的等號兩邊的特點,讓學生用語言表達公式的內(nèi)容,讓學生說明運用公式過程中容易出現(xiàn)的問題和特別注意的細節(jié)。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應(yīng)用。

《完全平方公式》教案5

  本節(jié)課教學內(nèi)容分析

  《完全平方公式》是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎(chǔ)上的拓展,而且公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,是從一般到特殊的認知規(guī)律的典型范例.通過對公式的學習來簡化某些整式的運算,為以后的因式分解、分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ).因此,完全平方公式在初中階段的教學中具有很重要地位。

  依據(jù)課程標準

  本節(jié)課對應(yīng)的課標要求是讓學生了解公式的幾何背景,能推導驗證公式的準確性,并會利用公式進行簡單計算。經(jīng)歷從“數(shù)”與“形”兩個角度解決問題的過程,體會數(shù)形結(jié)合的思想。經(jīng)歷探究解決簡單問題的過程,提高學生分析問題和解決問題的能力,發(fā)展應(yīng)用意識。

  學習者特征分析

  八年級的學生年齡基本都在十四歲左右,正處于活潑好動的青春期中期。此階段的學生,個人意識增強,渴望歸屬感和被認同。如果課堂氣氛沉悶單調(diào),他們也會較快的感到疲勞煩躁。針對學生的心智特征及本課實際,我以“引”為主,主要采用啟發(fā)引導,合作交流的方式展開教學,引導學生主動參與到教學過程中來建構(gòu)知識。

  教學策略闡述

  1、問題引入策略:通過提出問題,激發(fā)學生學習的興趣和求知欲,創(chuàng)設(shè)寬松活潑的課堂教學氣氛,維持學生學習的動機。

  2、自主學習策略:學生通過自己觀察、思考,促進思維的深層次加工和提高課堂參與度。

  3、引導探究策略:學生通過小組合作,推導驗證公式,充分發(fā)揮學生的主體作用。

  4、類比啟發(fā)策略:在完成教學要求的基礎(chǔ)上,通過解決與生活實際緊密聯(lián)系的問題情境,鞏固提高學生運用公式解決生活問題的能力。

  本節(jié)課教學目標

  知識和技能:

  1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力;

  2、會推導完全平方公式,并能運用公式進行簡單的計算;

  3、了解完全平方公式的幾何背景。

  過程和方法:

  1、在學習的過程中使學生體會數(shù)形結(jié)合的思想;

  2、經(jīng)歷公式的驗證,進一步發(fā)展符號感和推理能力,培養(yǎng)學生數(shù)學建模的思想。情感態(tài)度和價值觀:體驗數(shù)學活動充滿著探索性和創(chuàng)造性,并在數(shù)學活動中獲得成功的體驗與喜悅,樹立自信心。

  教學重點和難點

  項目內(nèi)容解決措施

  教學重點完全平方公式的結(jié)構(gòu)特點及公式的`直接運用在教學中逐步設(shè)置疑問,引導學生動手、動腦、動口,積極參與知識全過程。由易到難安排例題、練習,符合八年級學生的認知結(jié)構(gòu)特點。課堂中,對學生激勵為主,表揚為輔,樹立其學習的自信心。師生互動、講練結(jié)合,從而突出教學重點、突破教學難點.

  教學難點完全平方公式的應(yīng)用以及對公式中字母a、b的廣泛含義的理解與正確應(yīng)用

  教學過程設(shè)計教學過程設(shè)計教學過程設(shè)計教學過程設(shè)計教學內(nèi)容師生互動設(shè)計意圖

  活動一:問題感知,情景切入有一種記憶游戲,游戲規(guī)則是:每次只能翻一張底牌,記憶并找出相同內(nèi)容的底牌,連續(xù)點出相同內(nèi)容的底牌即可消失,直至底牌全部消失就算過關(guān)。下圖是每個關(guān)卡的底牌布局,觀察并回答下列問題:第a個關(guān)卡有xx張底牌;第b個關(guān)卡有xx張底牌;第(a+b)個關(guān)卡有xxxxx張底牌;第a個關(guān)卡的底牌數(shù)與第b個關(guān)卡的底牌數(shù)之和與第(a+b)個關(guān)卡的底牌數(shù)哪個多?多多少?

  師:班班通展示問題,層層設(shè)問,引導學生解決實際問題,并關(guān)注學生情況。

  生:在教師引導下思考并解決問題利用生活情景引入,消除學生的陌生感,激發(fā)學生的學習興趣,體會數(shù)學來源于生活。

  活動二:深入問題,合作探究2、計算下列各式,你能發(fā)現(xiàn)什么規(guī)律

 。1)(p+1) =(p+1)(p+1) = xxxx;

 。2)(m+2) = xxxx;

 。3)(p-1) = (p-1)(p-1)=xxx;

 。4)(m-2) = xxxxx.

  (5)(a+b) =xxxxx;(a-b) =xxxxxxx.在教師的引導下,學生獨立完成解題,觀察并找出式子的規(guī)律讓學生體會到完全平方公式是乘法公式的特例,因應(yīng)用廣泛,計算簡捷,故作為公式學習。

  3、猜想?你是怎樣推導的呢?還有其他證明方法嗎?

  生:用代數(shù)的方法驗證公式的準確性繼續(xù)讓學生體會到完全平方公式是乘法公式的特例化未學為已知,體會數(shù)學中的化歸思想。

  活動三:結(jié)構(gòu)分析,建構(gòu)新知4、完全平方公式:

  5、分析公式的結(jié)構(gòu)特征:左邊:兩數(shù)和的平方。右邊:是一個二次三項式,其中兩項為兩數(shù)的平方和;另一項是兩數(shù)積的2倍,且與左邊乘式中間的符號相同。用文字語言敘述:兩數(shù)和的平方,等于它們的平方和加上它們積的2倍。簡記:首平方,尾平方,積的2倍中間放,積的符號看前方。幾何解釋:完全平方和公式完全平方差公式

  師:引導學生觀察公式的左右邊,進一步挖掘公式的結(jié)構(gòu)特征教師在學生的發(fā)言過程中進行逐步歸納。

  生:用幾何的方法驗證公式的準確性學生自主學習養(yǎng)成獨立思考、分析問題、解決問題的習慣以形助數(shù),使學生體會數(shù)學中的數(shù)學結(jié)合思想

  活動四:范例分析,深化新知例1、用完全平方公式計算下列各題,并指出誰可以看作公式中的a、b。

  (2)仔細閱讀例1,注意以下問題:

 、倜康佬☆}分別選用了哪個完全平方公式,為什么?并能指出誰可以看作公式中的

 、诮忸}步驟.師:例題講解分析解題思路,強調(diào)注意事項,規(guī)范解題格式生:及時小結(jié)讓學生學會優(yōu)化選擇

  活動五:嘗試練習,拓展提升

  7、下面各式的計算結(jié)果是否正確?如果不正確,應(yīng)當怎樣改正(1)(2)(3)(4)

  8、活用公式:

  9、你能用幾種方法運用完全平方公式計算(1) (2)例2、運用完全平方公式計算:(1)102(2)99師:搶答題,看誰的反應(yīng)快生:在搶答后小結(jié)套用公式的注意事項師:引導學生一題多解并關(guān)注學生的書寫的規(guī)范性。

  生:靈活運用公式解題及時練習鞏固應(yīng)用在例題、練習的基礎(chǔ)上變式,加深學生對所學知識的理解滲透一題多解的數(shù)學思想,發(fā)散學生數(shù)學思維。多層面多方位考察完全平方公式,加深理解。

  活動六:課堂小結(jié),歸納提高本節(jié)課你有哪些收獲完全平方公式:記憶口訣:首平方,尾平方,積的2倍中間放,積的符號看前方。注意:

  a、b可以表示數(shù),單項式或多項式。

  2、解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇.

  3、數(shù)學思想:體會數(shù)學中的一題多解,數(shù)形結(jié)合思想,化歸思想,整體代入思想.教師引導學生總結(jié)回顧學習內(nèi)容,幫助學生學習歸納反思。并關(guān)注不同層次學生對本節(jié)知識的理解、掌握程度。學生自己總結(jié),互相補充。通過學生的自評與反思,有助于學生養(yǎng)成整理知識的習慣,有助于學生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。同時又有利于及時調(diào)整教學策略,為下節(jié)課的教學打下伏筆。

  活動七:布置作業(yè),自我評價

  1、必做題:課本第112頁

  2 、3(1)(3)2、選做題:課本第112頁

  3(2)(4)、4、7教師精選習題,布置作業(yè)學生課外獨立完成作業(yè)。課后作業(yè)是對課堂所學知識的鞏固,提高、延續(xù)和補充。

  板書設(shè)計

  §14.2.2完全平方公式公式口訣解題技巧例1.略例2.略練習、草稿

  教學預(yù)測、反思

  預(yù)測:

 。1)這節(jié)課倡導了以學生為主,教師為輔的思想,留足了一定的時間讓學生去發(fā)現(xiàn)探索、以及做練習,學生學習效果明顯。

  (2)采用了多媒體輔助教學,以較清晰的手段呈現(xiàn)了學生整個學習過程,讓課堂更加直觀明了,同時容量也增大了。

 。3)完全平方公式的直接應(yīng)用掌握還可以,公式的靈活應(yīng)用和妙用大部分學生還沒有掌握,課下加強聯(lián)系,多變幻題型,突破難關(guān)。反思:好的方面:不足方面:

《完全平方公式》教案6

  學習目標:

  1、會推導完全平方公式,并能用幾何圖形解釋公式;

  2、利用公式進行熟練地計算;

  3、經(jīng)歷探索完全平方公式的推導過程,發(fā)展符號感,體會特殊一般特殊的認知規(guī)律。

  學習過程:

  (一)自主探索

  1、計算:(1)(a+b)2 (2)(a-b)2

  2、你能用文字敘述以上的.結(jié)論嗎?

  (二)合作交流:

  你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學交流。

  (三)試一試,我能行。

  1、利用完全平方公式計算:

  (1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[來源:中.考.資.源.網(wǎng)]

  (四)鞏固練習

  利用完全平方公式計算:

  A組:

  (1)( x+ y)2 (2)(-2m+5n)2

  (3)(2a+5b)2 (4)(4p-2q)2

  B組:

  (1)( x- y2) 2 (2)(1.2m-3n)2

  (3)(- a+5b)2 (4)(- x- y)2

  C組:

  (1)1012 (2)542 (3)9972

  (五)小結(jié)與反思

  我的收獲:

  我的疑惑:

  (六)達標檢測

  1、(a-b)2=a2+b2+ .

  2、(a+2b)2= .

  3、如果(x+4)2=x2+kx+16,那么k= .

  4、計算:

  (1)(3m- )2 (2)(x2-1)2

  (2)(-a-b)2 (4)( s+ t)2

《完全平方公式》教案7

  教學過程

  一、議一議

  探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即( )x = x y,由單項式乘以單項式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x y.學生動筆:寫出(2)(3)題的結(jié)果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,其余同學補充糾正.出示單項式除法法則(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.

  二、做一做

  鞏固新知例1計算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學生活動:在練習本上計算.教師引導學生按法則進行運算,首先確定它們的'系數(shù),把系數(shù)的商作為商的系數(shù),其次確定相同的字母,在被除式中出現(xiàn)的字母作為商中可能含有的字母,相同字母的指數(shù)之差作為商式中對應(yīng)字母的指數(shù),只在被除式中含有的字母指數(shù)不變,最后化簡.第(1)(2)題對照法則進行,第(3)題要按運算順序進行.第(4)題先把(2a+b)看作一個整體 (一個字母)相除,后用完全平方公式計算.教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b

  三、隨堂練習

  P40 1學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,互相訂正.教師巡回檢查,對存在問題及時更正.待四名板演同學完成后,師生共同訂正.

  四、小結(jié)

  本節(jié)課主要學習了單項式除以單項式的運算.在運用法則計算時應(yīng)注意以下幾點:

  1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;

  2.符號問題;

  3.指數(shù)相同的同底數(shù)冪相除商為1而不是0;4.在混合運算中,要注意運算的順序.五、作業(yè)課本習題1.15.P41 1、2. 3

《完全平方公式》教案8

  學習目標:

  1、能說出有序數(shù)對的定義。

  2、能用有序數(shù)對表示實際生活中物體的位置。

  學習重點:用有序數(shù)對表示位置。

  學習難點:用有序數(shù)對表示位置。

  學習過程:

  自學過程: (一)、自學知識清單

  1、教材64頁,在圖7.1—1中找出參加數(shù)學問題討論的同學。

  小組內(nèi)交流一下,看一看你們找的位置相同嗎?

  思考:(2,4)和(4,2)在同一位置嗎?為什么?

  2、請回答教材65頁:思考題。

  3、我們把這種有順序的______個數(shù)a與b組成的`_______叫做_______,記作( , )。

 。ǘ、自學反饋

  練習1、利用________________,可以準確地表示出一個位置,

  如電影院的座號,“3排2號”、表示為(3,2),則“2排3號”可以表示為 。

  練習2、如圖(1)所示,一方隊正沿箭頭所指的方向前進,A的位置為三列四行,表示為A(3,4),則B,C,D表示為B( , ),C( , )

  D( , )

  練習3、完成課本第65頁的練習。

  練習4、用有序數(shù)對表示物體位置時,(3,2)與(2,3)表示的位置相同嗎?請結(jié)合下面圖形加以說明.

  練習5、如圖所示,A的位置為(2,6),小明從A出發(fā),經(jīng)

  (2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小剛也從A出發(fā),經(jīng)

  (3,6)→(4,6)→(4,7)→(5,7)→(6,7),則此時兩人相距幾個格?

《完全平方公式》教案9

  課題教案:

  完全平方公式

  學科:

  數(shù)學

  年級:

  七年級

  1內(nèi)容本節(jié)課的主題:

  通過一系列的探究活動,引導學生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

  1.1以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  1.2用標準的數(shù)學語言得出結(jié)論,使學生感受科學的嚴謹,啟迪學生的數(shù)學思維。

  2教學目標

  2.1知識目標:會推導完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

  2.2技能目標:經(jīng)歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養(yǎng)學生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅實的基礎(chǔ)。

  2.3情感與態(tài)度目標:通過觀察、實驗、歸納、類比、推斷獲得數(shù)學猜想,體驗數(shù)學活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性。

  3教學重點

  完全平方公式的準確應(yīng)用。

  4教學難點

  掌握公式中字母表達式的意義及靈活運用公式進行計算。

  5教育理念和教學方式

  5.1教學是師生交往、積極互動、共同發(fā)展的過程。教師是學生學習的組織者、促進者、合作者:本節(jié)的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的結(jié)論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發(fā)現(xiàn)他們所學東西的`個人意義和社會價值,通過恰當?shù)慕虒W方式引導學生學會自我調(diào)適,自我選擇。

  學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

  5.2采用“問題情景—探究交流—得出結(jié)論—強化訓練”的模式展開教學。充分利用動手實踐的機會,盡可能增加教學過程的趣味性,強調(diào)學生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學習促進自主探究。

  6具體教學過程設(shè)計如下:

  6.1提出問題:[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

  (x+3)2=,(x-3)2=,這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:

  (2m+3n)2=,(2m-3n)2=

  6.2分析問題

  6.2.1[學生回答]分組交流、討論多項式的結(jié)構(gòu)特點

 。1)原式的特點。兩數(shù)和的平方。

 。2)結(jié)果的項數(shù)特點。等于它們平方的和,加上它們乘積的兩倍

 。3)三項系數(shù)的特點(特別是符號的特點)。

 。4)三項與原多項式中兩個單項式的關(guān)系。

  6.2.2[學生回答]總結(jié)完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  6.2.3、[學生回答]完全平方公式的數(shù)學表達式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3運用公式,解決問題

  6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

  (m+n)2=,(m-n)2=,(-m+n)2=,(-m-n)2=,6.3.2小試牛刀

 、(x+y)2=;②(-y-x)2=;

 、(2x+3)2=;④(3a-2)2=;

  6.4學生小結(jié):你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

 。1)公式右邊共有3項。

 。2)兩個平方項符號永遠為正。

 。3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  6.5[作業(yè)]P34隨堂練習P36習題

《完全平方公式》教案10

  學習目標:

  1、經(jīng)歷探索完全平方公式的過程,發(fā)展學生觀察、交流、歸納、猜測、驗證等能力。

  2、會推導完全平方公式,了解公式的幾何背景,會用公式計算。

  3、數(shù)形結(jié)合的數(shù)學思想和方法。

  學習重點:會推導完全平方公式,并能運用公式進行簡單的計算。

  學習難點:掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。

  學習過程:

  一、學習準備

  1、利用多項式乘以多項式計算:(a+b)2 (a-b)2

  2、這兩個特殊形式的多項式乘法結(jié)果稱為完全平方公式。

  嘗試用自己的語言敘述完全平方公式:

  3、完全平方公式的幾何意義:閱讀課本64頁,完成填空。

  4、完全平方公式的結(jié)構(gòu)特征:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  左邊是 形式,右邊有三項,其中兩項是 形式,另一項是

  注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的.結(jié)構(gòu)特征,就可以運用這一公式,可用符號表示為:(□±△)=□2±2□△+△2

  5、兩個完全平方公式的轉(zhuǎn)化:

  (a-b)2= 2=( )2+2( )+( )2=

  二、合作探究

  1、利用乘法公式計算:

  (1) (3a+2b)2 (2) (-4x2-1)2

  分析:要分清題目中哪個式子相當于公式中的a ,哪個式子相當于公式中的b

  2、利用乘法公式計算:

  (1) 992 (2) ( )2

  分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2

  3、利用完全平方公式計算:

  (1) (a+b+c)2 (2) (a-b)3

  三、學習

  對照學習目標,通過預(yù)習,你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

  四、自我測試

  1、下列計算是否正確,若不正確,請訂正;

  (1) (-1+3a)2=9a2-6a+1

  (2) (3x2- )2=9x4-

  (3) (xy+4)2=x2y2+16

  (4) (a2b-2)2=a2b2-2a2b+4

  2、利用乘法公式計算:

  (1) (3x+1)2 (2) (a-3b)2

  (3) (-2x+ )2 (4) (-3m-4n)2

  3、利用乘法公式計算:

  (1) 9992 (2) (100.5)2

  4、先化簡,再求值;

  ( m-3n)2-( m+3n)2+2,其中m=2,n=3

  五、思維拓展

  1、如果x2-kx+81是一個完全平方公式,則k的值是

  2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是

  3、已知(x+y)2=9, (x-y)2=5 ,求xy的值

  4、x+y=4 ,x-y=10 ,那么xy=

  5、已知x- =4,則x2+ =

《完全平方公式》教案11

  教學目標

  1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應(yīng)的.因式分解。

  2、掌握運用完全平方公式分解因式的.方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

  教學方法:

  對比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動:

  學生活動

  復習鞏固:

  上節(jié)課我們學習了運用平方差公式分解因式,請同學們先閱讀課本87—88頁,看看你能有什么發(fā)現(xiàn)?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強調(diào)注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學生易錯點,及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創(chuàng)新)

  將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

  練習:第88頁練一練第1、2題

《完全平方公式》教案12

  教學目標

  1、知識與技能:體會公式的發(fā)現(xiàn)和推導過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進行簡單的計算.

  2、過程與方法:通過讓學生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力.培養(yǎng)學生的數(shù)形結(jié)合能力.

  3、情感態(tài)度價值觀:體驗數(shù)學活動充滿著探索性和創(chuàng)造性,并在數(shù)學活動中獲得成功的體驗與喜悅,樹立學習自信心.

  教學重難點

  教學重點:

  1、對公式的理解,包括它的推導過程、結(jié)構(gòu)特點、語言表述(學生自己的語言)、幾何解釋.

  2、會運用公式進行簡單的計算.

  教學難點:

  1、完全平方公式的推導及其幾何解釋.

  2、完全平方公式的'結(jié)構(gòu)特點及其應(yīng)用.

  教學工具

  課件

  教學過程

  一、復習舊知、引入新知

  問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點.

  問題2:平方差公式是如何推導出來的?

  問題3:平方差公式可用來解決什么問題,舉例說明.

  問題4:想一想、做一做,說出下列各式的結(jié)果.

  (1)(a+b)2(2)(a-b)2

  (此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學生的學習興趣.)

  二、創(chuàng)設(shè)問題情境、探究新知

  一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

  (1)四塊面積分別為:、、、;

  (2)兩種形式表示實驗田的總面積:

 、僬w看:邊長為的大正方形,S=;

 、诓糠挚矗核膲K面積的和,S=.

  總結(jié):通過以上探索你發(fā)現(xiàn)了什么?

  問題1:通過以上探索學習,同學們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?

  問題2:如果還有同學不認同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

  (教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發(fā)表見解,但要驗證)

  問題3:你能說說(a+b)2=a2+2ab+b2

  這個等式的結(jié)構(gòu)特點嗎?用自己的語言敘述.

  (結(jié)構(gòu)特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)

  問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

  總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

  問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

  語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.

  強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

  三、例題講解,鞏固新知

  例1:利用完全平方公式計算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4x2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16x2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流總結(jié):運用完全平方公式計算的一般步驟

  (1)確定首、尾,分別平方;

  (2)確定中間系數(shù)與符號,得到結(jié)果.

  四、練習鞏固

  練習1:利用完全平方公式計算

  練習2:利用完全平方公式計算

  練習3:

  (練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現(xiàn)問題,學生、教師應(yīng)及時幫助.)

  五、變式練習

  六、暢談收獲,歸納總結(jié)

  1、本節(jié)課我們學習了乘法的完全平方公式.

  2、我們在運用公式時,要注意以下幾點:

  (1)公式中的字母a、b可以是任意代數(shù)式;

  (2)公式的結(jié)果有三項,不要漏項和寫錯符號;

  (3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.

  七、作業(yè)設(shè)置

《完全平方公式》教案13

  重點、難點根據(jù)公式的特征及問題的特征選擇適當?shù)墓接嬎?

  教學過程

  一、議一議

  1.邊長為(a+b)的正方形面積是多少?

  2.邊長分別為a、b拍的兩個正方形面積和是多少?

  3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b) (2)a +b (3)因為(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.

  二、做一做

  例1. 利用完全平方式計算1. 102 。

  2. 197 師:要利用完全平方公式計算,則要創(chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計算盡可能簡便.學生活動:在練習本上演示此題.讓學生敘述

  教師板書.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.計算:1.(x-3) -x

  2.(2a+b- )(2a-b+ )師生共同分析:1中(x-3) 可利用完全平方公式.學生動筆解答第1題.教師根據(jù)學生解答情況,板書如下:解:1. (x-3) -x = x +6x+9-x =6x+9師問:此題還有其他方法解嗎?引導學生逆用平方差公式,從而培養(yǎng)學生創(chuàng)新精神.學生活動:分小組討論第(2)題的解法.此題學生解答,難度較大.教師要引導學生使用加法結(jié)合律,為使用公式創(chuàng)造條件.學生小組交流派代表進行全班交流.最后教師板書解題過程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

  三、試一試

  計算:

  1. (a+b+c)

  2. (a+b) 師生共同分析:對于1要把多項式完全平方轉(zhuǎn)化為二項式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c) =[a+(b+c)] 對于(2)可化為(a+b) =(a+b)(a+b) .學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。

  教師板書.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

  四、隨堂練習

  P38 1

  五、小結(jié)

  本節(jié)課進一步學習了完全平方公式,在應(yīng)用此公式運算時注意以下幾點. 1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(ab) = a b 的錯誤,或(ab) = a ab+b (漏掉2倍)等錯誤.2.要能根據(jù)公式的'特征及題目的特征靈活選擇適當?shù)墓接嬎?3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.

  六、作業(yè)

  課本習題1.14 P38 1、2、3.

  七、教后反思

  1.9 整式的除法第一課時 單項式除以單項式教學目標1.經(jīng)歷探索單項式除法的法則過程,了解單項式除法的意義.

  2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.

《完全平方公式》教案14

  一、教材分析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學八年級上冊第十四章的內(nèi)容。在此之前,學生已學習了多項式的乘法,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)課通過學生合作學習,利用多項式相乘法則和圖形解釋而得到完全平方公式,進而理解和運用完全平方公式,對以后學習因式分解,解一元二次方程都具有舉足輕重的作用。

  作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。

  二、學情分析

  學生剛學過多項式的乘法,已具備學習和運用完全平方公式的知識結(jié)構(gòu),但是由于學生初步學習乘法公式,認清公式結(jié)構(gòu)并不容易,因此教學時要循序漸進。

  三、教學目標

  知識與技能

  1.完全平方公式的推導及其應(yīng)用。

  2.完全平方公式的.幾何證明。

  過程與方法

  經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。

  情感態(tài)度與價值觀

  對學生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學思想的滲透。

  四、教學重點難點

  教學重點

  完全平方公式的推導過程;結(jié)構(gòu)特點與公式的應(yīng)用。

  教學難點

  完全平方公式結(jié)構(gòu)特點及其應(yīng)用。

  五、教法學法

  多媒體輔助教學,將知識形象化、生動化,激發(fā)學生的興趣。教學中逐步設(shè)置疑問,引導學生動手、動腦、動口,積極參與知識全過程。

  六、教學過程設(shè)計

  師生活動

  設(shè)計意圖

  一.復習多項式與多項式的乘法法則

  1、多項式與多項式的乘法法則內(nèi)容。

  2、多項式與多項式的乘法練習。

  二.講授新課

  完全平方公式的推導

  1、利用多項式與多項式的乘法法則和幾何法推導完全平方(和)公式

  附:有簡單的填空練習

  2、利用多項式乘法則和換元法推導完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、總結(jié)完全平方公式的特點

  介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

  三、課堂練習

  1、改錯練習

  2、例題講解(總結(jié)利用完全平方公式計算的步驟)

  第一步選擇公式,明確是哪兩項和(或差)的平方;

  第二步準確代入公式;

  第三步化簡。

  計算練習

 。ǎ保┱n本110頁第一題

  (2) (x-6)2 (y-5)2

  四、課堂小結(jié):

  1、應(yīng)用完全平方公式應(yīng)注意什么?

  在解題過程中要準確確定a和b,對照公式原形的兩邊, 做到不丟項、不弄錯符號、2ab時不能少乘以2。

  2、助記口訣

  復習多項式與多項式的乘法法則為新課的學習做準備。

  利用不同的的方法來推導完全平方公式,讓學生認知數(shù)學中的不同解題方法。

  利用助記口訣幫助學生更加準確的掌握完全平方公式的特點。

  通過課堂練習,使學生掌握用完全平方公式計算的步驟,加強學生解題的準確率。

  強調(diào)應(yīng)用完全平方公式解題的注意點和助記口訣,提高學生解決問題的能力和解題的準確率。

《完全平方公式》教案15

  一、教材分析

  完全平方公式是初中代數(shù)的一個重要組成部分,是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎(chǔ)上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

  本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

  二、學情分析

  多數(shù)學生的抽象思維能力、邏輯思維能力、數(shù)學化能力有限,理解完全平方公式的幾何解釋、推導過程、結(jié)構(gòu)特點有一定困難。所以教學中應(yīng)盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結(jié)構(gòu)特征,進一步發(fā)展學生的合情推理能力、合作交流能力和數(shù)學化能力。

  三、教學目標

  知識與技能

  利用添括號法則靈活應(yīng)用乘法公式。

  過程與方法

  利用去括號法則得到添括號法則,培養(yǎng)學生的逆向思維能力。

  情感態(tài)度與價值觀

  鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。

  四、教學重點難點

  教學重點

  理解添括號法則,進一步熟悉乘法公式的合理利用.

  教學難點

  在多項式與多項式的乘法中適當添括號達到應(yīng)用公式的目的.

  五、教學方法

  思考分析、歸納總結(jié)、練習、應(yīng)用拓展等環(huán)節(jié)。

  六、教學過程設(shè)計

  師生活動

  設(shè)計意圖

  一.提出問題,創(chuàng)設(shè)情境

  請同學們完成下列運算并回憶去括號法則.

 。1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:

  去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不改變符合;如果括號前是負號,去掉括號后,括號里的各項都改變符合.

  也就是說,遇“加”不變,遇“減”都變.

  二、探究新知

  把上述四個等式的'左右兩邊反過來,又會得到什么結(jié)果呢?

 。1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

 。3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結(jié)出添括號法則來呢?

 。▽W生分組討論,最后總結(jié))

  添括號法則是:

  添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號.

  也是:遇“加”不變,遇“減”都變.

  請同學們利用添括號法則完成下列練習:

  1.在等號右邊的括號內(nèi)填上適當?shù)捻棧?/p>

 。1)a+b-c=a+( ) (2)a-b+c=a-( )

  (3)a-b-c=a-( ) (4)a+b+c=a-( )

  判斷下列運算是否正確.

 。1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

 。3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  總結(jié):添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數(shù)式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數(shù)式是否正確.

  三、新知運用

  有些整式相乘需要先作適當?shù)淖冃,然后再用公式,這就需要同學們理解乘法公式的結(jié)構(gòu)特征和真正內(nèi)涵.請同學們分組討論,完成下列計算.

  例:運用乘法公式計算

 。1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

  (3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.隨堂練習:

  1.課本P111練習

  2.《學案》101頁——鞏固訓練

  五、課堂小結(jié):

  通過本節(jié)課的學習,你有何收獲和體會?

  我們學會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.

  我體會到了轉(zhuǎn)化思想的重要作用,學數(shù)學其實是不斷地利用轉(zhuǎn)化得到新知識,比如由繁到簡的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.

  六、檢測作業(yè)

  習題14.2: 必做題: 3 、4 、5題

  選做題:7題

  知識梳理,教學導入,激發(fā)學生的學習熱情

  交流合作,探究新知,以問題驅(qū)動,層層深入。

  歸納總結(jié),提升課堂效果。

  作業(yè)檢測,檢測目標的達成情況。

【《完全平方公式》教案】相關(guān)文章:

完全平方公式教案04-25

數(shù)學教案完全平方公式12-30

完全平方公式教案設(shè)計01-24

數(shù)學教案:完全平方公式11-23

《完全平方公式》教學反思(精選10篇)08-15

初中數(shù)學平方差公式教案01-10

初中數(shù)學平方差公式教案2篇02-16

初中數(shù)學七年級下冊數(shù)學《完全平方公式》優(yōu)秀說課稿(通用10篇)05-22

《平方差公式》教學反思范文(精選10篇)09-19

《平方差公式》教學設(shè)計(通用10篇)11-10