- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 相關(guān)推薦
關(guān)于因式分解教案錦集六篇
在教學(xué)工作者開展教學(xué)活動前,通常會被要求編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。優(yōu)秀的教案都具備一些什么特點呢?以下是小編精心整理的因式分解教案6篇,希望對大家有所幫助。
因式分解教案 篇1
教學(xué)目標(biāo):
1、進一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解4、應(yīng)用因式分解來解決一些實際問題
5、體驗應(yīng)用知識解決問題的樂趣
教學(xué)重點:靈活運用因式分解解決問題
教學(xué)難點:靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
。7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
分解因式要注意以下幾點:
。1)。分解的對象必須是多項式。
。2)。分解的結(jié)果一定是幾個整式的乘積的`形式。
。3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學(xué)生活動:各自測量。]
鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
講授新課
找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導(dǎo)學(xué)生進行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形!
“有一個角是直角的菱形叫做正方形!
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
。3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識應(yīng)用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對因式分解又有哪些新的認識?
因式分解教案 篇2
教學(xué)目標(biāo)
1.知識與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價值觀
在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值.
重、難點與關(guān)鍵
1.重點:了解因式分解的意義,感受其作用.
2.難點:整式乘法與因式分解之間的關(guān)系.
3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問題牽引】
請同學(xué)們探究下面的2個問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>
問題2:當(dāng)a=102,b=98時,求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會做下面的填空嗎?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.
三、小組活動,共同探究
【問題牽引】
。1)下列各式從左到右的變形是否為因式分解:
、伲▁+1)(x-1)=x2-1;
、赼2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
。2)在下列括號里,填上適當(dāng)?shù)捻,使等式成立?/p>
①9x2(______)+y2=(3x+y)(_______);
、趚2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
【探研時空】計算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自己進行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運算有何區(qū)別?
六、布置作業(yè),專題突破
選用補充作業(yè).
板書設(shè)計
15.4.1 因式分解
1、因式分解 例:
練習(xí):
15.4.2 提公因式法
教學(xué)目標(biāo)
1.知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
2.過程與方法
使學(xué)生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進行因式分解.
3.情感、態(tài)度與價值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:掌握用提公因式法把多項式分解因式.
2.難點:正確地確定多項式的最大公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【復(fù)習(xí)交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
。5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的公共的'因式叫做這個多項式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
【教師提問】 多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.
【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/strong>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書設(shè)計
15.4.2 提公因式法
1、提公因式法 例:
練習(xí):
15.4.3 公式法(一)
教學(xué)目標(biāo)
1.知識與技能
會應(yīng)用平方差公式進行因式分解,發(fā)展學(xué)生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性.
3.情感、態(tài)度與價值觀
培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:利用平方差公式分解因式.
2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進自己的思維.
教學(xué)過程
一、觀察探討,體驗新知
【問題牽引】
請同學(xué)們計算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
。1)(a+5)(a-5)=a2-52=a2-25;
。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【學(xué)生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時,導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書)
。1)x2-9y2; (2)16x4-y4;
。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
。5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學(xué)生從平方差公式的角度進行因式分解,請5位學(xué)生上講臺板演.
【學(xué)生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
。2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
。5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、隨堂練習(xí),鞏固深化
課本P168練習(xí)第1、2題.
【探研時空】
1.求證:當(dāng)n是正整數(shù)時,n3-n的值一定是6的倍數(shù).
2.試證兩個連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個奇數(shù)整除.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通?紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
五、布置作業(yè),專題突破
課本P171習(xí)題15.4第2、4(2)、11題.
板書設(shè)計
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 練習(xí):
15.4.3 公式法(二)
教學(xué)目標(biāo)
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.
2.難點:靈活地應(yīng)用公式法進行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
【問題牽引】
1.分解因式:
。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
。3) x2-0.01y2.
因式分解教案 篇3
教學(xué)目標(biāo)
1、 會運用因式分解進行簡單的多項式除法。
2、 會運用因式分解解簡單的方程。
二、教學(xué)重點與難點教學(xué)重點:
教學(xué)重點
因式分解在多項式除法和解方程兩方面的應(yīng)用。
教學(xué)難點:
應(yīng)用因式分解解方程涉及較多的推理過程。
三、教學(xué)過程
(一)引入新課
1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動,講授新課
1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個小問題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應(yīng)填入怎樣的.數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦嵣,若AB=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0
試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個時,常用帶足標(biāo)的字母表示,比如:x1 ,x2
等練習(xí):課本P162課內(nèi)練習(xí)2
做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?
教師總結(jié):運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:
。1)運用因式分解進行多項式除法
。2)運用因式分解解簡單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
因式分解教案 篇4
第6.4因式分解的簡單應(yīng)用
背景材料:
因式分解是初中數(shù)學(xué)中的一個重點內(nèi)容,也是一項重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。
教材分析:
本節(jié)課是本章的'最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機會體驗主動學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗。
教學(xué)目標(biāo):
1、在整除的情況下,會應(yīng)用因式分解,進行多項式相除。
2、會應(yīng)用因式分解解簡單的一元二次方程。
3、體驗數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。
教學(xué)重點:
學(xué)會應(yīng)用因式分解進行多項式除法和解簡單一元二次方程。
教學(xué)難點:
應(yīng)用因式分解解簡單的一元二次方程。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學(xué)生的學(xué)習(xí)方法。
教學(xué)過程:
一、創(chuàng)設(shè)情境,復(fù)習(xí)提問
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
。3)2 a2b-8a2b (4)4x2-9
[四位同學(xué)到黑板上演板,本課時用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]
教師訂正
提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
。ㄏ茸寣W(xué)生思考上面所提出的問題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項式除以單項式。
。2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(讓學(xué)生自己比較哪種方法好)
利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計算
(4x2-9)÷(3-2x)
學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)
。ㄈw學(xué)生動手動腦,然后叫學(xué)生回答,及時表揚,講練結(jié)合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉(zhuǎn)化為單項式的除法]
練習(xí)計算
。1)(a2-4)÷(a+2)
。2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學(xué)習(xí)
1、以四人為一組討論下列問題
若A?B=0,下面兩個結(jié)論對嗎?
(1)A和B同時都為零,即A=0且B=0
。2)A和B至少有一個為零即A=0或B=0
[合作學(xué)習(xí),四個小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學(xué)習(xí)興趣]
2、你能用上面的結(jié)論解方程
。1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學(xué)生先獨立完成,再組織交流,最后教師針對性地講解,讓學(xué)生總結(jié)步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習(xí),解下列方程
。1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
。1)應(yīng)用因式分解和換元思想可以把某些多項式除法轉(zhuǎn)化為單項式除法。
。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個一元一次方程來解。
設(shè)計理念:
根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學(xué)生的學(xué)習(xí)方法。
因式分解教案 篇5
因式分解
教材分析
因式分解是進行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運算的基礎(chǔ)上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對于代數(shù)知識的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運用公式法,分組分解法來進行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學(xué)生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的'方法是教學(xué)中的難點。
教學(xué)目標(biāo)
認知目標(biāo):(1)理解因式分解的概念和好處
。2)認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運用潛力。
情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學(xué)態(tài)度。
目標(biāo)制定的思想
1.目標(biāo)具體化、明確化,從學(xué)生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。
2.課堂教學(xué)體現(xiàn)潛力立意。
3.寓德育教育于教學(xué)之中。
教學(xué)方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)用心性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運用為教學(xué)程序,充分遵循學(xué)生的認知規(guī)律,使學(xué)生能順利地掌握重點,突破難點,提高潛力。
3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學(xué)生充分地動腦、動口、動手,用心參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動性原則。
4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學(xué)手段進行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。
教學(xué)過程安排
一、提出問題,創(chuàng)設(shè)情境
問題:看誰算得快?(計算機出示問題)
。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
。2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
(1)請每題想得最快的同學(xué)談思路,得出最佳解題方法(同時計算機出示答案)
。2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
。3)類比小學(xué)學(xué)過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。
板書課題:§7。1因式分解
1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
三、獨立練習(xí),鞏固新知
練習(xí)
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)
、伲▁+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
、踑2—2ab+b2=(a—b)2
、3a(a+2)=3a2+6a
、3a2+6a=3a(a+2)
、辺2—4+3x=(x—2)(x+2)+3x
、遦2++2=(k+)2
、鄕—2—1=(x—1+1)(x—1—1)
、18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法正好相反。
問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個因式分解的例子嗎?
。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學(xué),運用新知:
例:把下列各式分解因式:(計算機演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
。4)2ab—a2—b2(5)8a3+b6
練習(xí)2:填空:(計算機演示)
。1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
。2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強化訓(xùn)練,掌握新知:
練習(xí)3:把下列各式分解因式:(計算機演示)
。1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
。4)x2+—x(5)x2—0。01(6)a3—1
。ㄗ寣W(xué)生上來板演)
六、變式訓(xùn)練,擴展新知(計算機演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機動題:(填空)x2—8x+m=(x—4),且m=
七、整理知識,構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學(xué)中滲透對立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7。1節(jié)
2.選做題:①x2+x—m=(x+3),且m=。
、趚2—3x+k=(x—5),且k=。
評價與反饋
1.透過由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。
2.透過例題及練習(xí),了解學(xué)生對概念的理解程度和實際運用潛力,最大限度地讓學(xué)生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學(xué)中的遺漏和不足,從而及時調(diào)控教與學(xué)。
3.透過機動題,了解學(xué)生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。
4.透過課后作業(yè),了解學(xué)生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學(xué)生面批作業(yè),能夠更及時、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對性更強。
5.透過課堂小結(jié),了解學(xué)生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。
6.課堂上反饋信息除了語言和練習(xí)外,學(xué)生神情也是信息來源,而且這些信息更真實。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調(diào)節(jié)教學(xué)。
因式分解教案 篇6
。ㄒ唬學(xué)習(xí)目標(biāo)
1、會用因式分解進行簡單的多項式除法
2、會用因式分解解簡單的方程
(二)學(xué)習(xí)重難點重點:因式分解在多項式除法和解方程中兩方面的應(yīng)用。
難點:應(yīng)用因式分解解方程涉及到的.較多的推理過程是本節(jié)課的難點。
(三)教學(xué)過程設(shè)計
看一看
1.應(yīng)用因式分解進行多項式除法.多項式除以多項式的一般步驟:
、賍_______________②__________
2.應(yīng)用因式分解解簡單的一元二次方程.
依據(jù)__________,一般步驟:__________
做一做
1.計算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成課后練習(xí)題
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________
(四)預(yù)習(xí)檢測
1.計算:
2.先請同學(xué)們思考、討論以下問題:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列結(jié)論中哪個正確( )
、貯、B同時都為零,即A=0,
且B=0;
②A、B中至少有一個為零,即A=0,或B=0;
(五)應(yīng)用探究
1.解下列方程
2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清練習(xí)
1.計算
2.解下列方程
、7x2+2x=0
②x2+2x+1=0
、踴2=(2x-5)2
④x2+3x=4x
【因式分解教案】相關(guān)文章:
因式分解教案03-19
人教版因式分解教案01-04
因式分解的教案設(shè)計10-07
因式分解教案設(shè)計12-16
初中數(shù)學(xué)因式分解教案08-28
初中數(shù)學(xué)因式分解教案11-05
初中數(shù)學(xué)《因式分解》優(yōu)秀教案09-03
公式法因式分解教案設(shè)計10-08
乘法公式與因式分解教案設(shè)計10-10