亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

《一次函數(shù)》教案

時(shí)間:2024-04-30 14:12:41 詩琳 教案 我要投稿

《一次函數(shù)》教案

  作為一名教學(xué)工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么問題來了,教案應(yīng)該怎么寫?下面是小編精心整理的《一次函數(shù)》教案,歡迎閱讀與收藏。

《一次函數(shù)》教案

  《一次函數(shù)》教案 1

  認(rèn)知目標(biāo):

  1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問題

  2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問題的

  能力情感目標(biāo):

  經(jīng)歷不等式與函數(shù)關(guān)系問題的探究過程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證

  教學(xué)重點(diǎn)

  一次函數(shù)與一元一次不等式的關(guān)系的`理解

  教學(xué)難點(diǎn)

  利用一次函數(shù)的圖象確定一元一次不等式的解集

  教學(xué)過程:

  一、探究新知:

  通過上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問題.現(xiàn)在我們來看看:

 。ǎ保┮韵聝蓚(gè)問題是否為同一個(gè)問題?

  ①解不等式:2x-4>0

 、诋(dāng)x為何值時(shí),函數(shù)y=2x-4的值大于0?

 。ǎ玻┠闳绾卫煤瘮(shù)的圖象來說明②?

 。ǎ常敖獠坏仁剑玻-4<0”可以與怎樣的一次函數(shù)問題是同一的?怎樣在圖象上加以說明?

  歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時(shí),求自變量響應(yīng)的取值范圍.

  二、應(yīng)用新知:

  1.練習(xí):P42練習(xí)1(3)(4)

 。.例2 用畫函數(shù)圖象的方法解不等式5x+4>2x+10.

  思考:我們應(yīng)該畫出什么函數(shù)的圖象來解?

  思路1:將不等式化為3x-6>0,然后畫出函數(shù)y=3x-6的圖象.

  思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)

  5x+4>2x+10.

  三、鞏固練習(xí)

  1.P42練習(xí)2(2)

  2.P45習(xí)題11.3第3、4題

  《一次函數(shù)》教案 2

  一、教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo)

  1、繼續(xù)鞏固一次函數(shù)的作圖方法;

  2、結(jié)合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質(zhì)。

  過程與方法目標(biāo)

  1、經(jīng)歷對(duì)一次函數(shù)性質(zhì)的探索過程,增強(qiáng)學(xué)生數(shù)形結(jié)合的意識(shí),培養(yǎng)學(xué)生識(shí)圖能力;

  2、經(jīng)歷對(duì)一次函數(shù)性質(zhì)的探索過程,培養(yǎng)學(xué)生的觀察力、語言表達(dá)能力。

  情感與態(tài)度目標(biāo)

  經(jīng)歷一次函數(shù)及性質(zhì)的探索過程,在合作與交流活動(dòng)中發(fā)展學(xué)生的`合作意識(shí)和能力。

  二、教材分析

  本節(jié)通過對(duì)一次函數(shù)圖像的研究,對(duì)一次函數(shù)的單調(diào)性作了探討;對(duì)一次函數(shù)的幾何意義也有涉及。在教學(xué)中要結(jié)合學(xué)生的認(rèn)識(shí)情況,循序漸進(jìn),逐層深入,對(duì)教材內(nèi)容可作適當(dāng)增加,但不宜太難。

  教學(xué)重點(diǎn):結(jié)合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質(zhì)。

  教學(xué)難點(diǎn):一次函數(shù)性質(zhì)的應(yīng)用。

  三、學(xué)情分析

  學(xué)生已經(jīng)對(duì)一次函數(shù)的圖像有了一定的認(rèn)識(shí),在此基礎(chǔ)上,結(jié)合一次函數(shù)的圖像,通過問題的設(shè)計(jì),引導(dǎo)學(xué)生探討一次函數(shù)的簡單性質(zhì),學(xué)生是較容易掌握的。

  四、教學(xué)過程

  (一)做一做

  在同一直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。

  (二)議一議

  上述四個(gè)函數(shù)中,隨著x值的增大,y的值分別如何變化?

  學(xué)生:有的在增大,有的在減小。

  師:哪些一次函數(shù)隨x的增大y在增大;哪些一次函數(shù)隨x的增大y在減小,是什么在影響這個(gè)變化?

  學(xué)生討論:y=2x+6和y=5x這兩個(gè)一次函數(shù)在增大;y=2x1和y=x+6在減小;影響這個(gè)變化的是x前面的系數(shù)k的符號(hào):當(dāng)k為正數(shù)時(shí),y隨x的增大而增大;當(dāng)k為負(fù)數(shù)時(shí),y隨x的增大而減小。

  師:當(dāng)k>0時(shí),一次函數(shù)的圖象經(jīng)過哪些象限?

  當(dāng)k<0時(shí),一次函數(shù)的圖象經(jīng)過哪些象限?

  《一次函數(shù)》教案 3

  教學(xué)目標(biāo)

  1、知識(shí)與技能

  能應(yīng)用所學(xué)的函數(shù)知識(shí)解決現(xiàn)實(shí)生活中的問題,會(huì)建構(gòu)函數(shù)“模型”、

  2、過程與方法

  經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維、

  3、情感、態(tài)度與價(jià)值觀

  培養(yǎng)變量與對(duì)應(yīng)的,形成良好的函數(shù)觀點(diǎn),體會(huì)一次函數(shù)的應(yīng)用價(jià)值、

  重、難點(diǎn)與關(guān)鍵

  1、重點(diǎn):一次函數(shù)的應(yīng)用、

  2、難點(diǎn):一次函數(shù)的應(yīng)用、

  3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維、

  教學(xué)方法

  采用“講練結(jié)合”的.教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用、

  教學(xué)過程

  一、范例點(diǎn)擊,應(yīng)用所學(xué)

  例5小芳以米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時(shí)間里她的跑步速度y(單位:米/分)隨跑步時(shí)間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象、

  y=

  例6A城有肥料噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng)、從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?

  解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(-x)噸、B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸、y與x的關(guān)系式為:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤)、

  由圖象可看出:當(dāng)x=0時(shí),y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時(shí)總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元、

  拓展:若A城有肥料300噸,B城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?

  二、隨堂練習(xí),鞏固深化

  課本P119練習(xí)、

  三、課堂,發(fā)展?jié)撃?/p>

  由學(xué)生自我本節(jié)課的表現(xiàn)、

  四、布置作業(yè),專題突破

  課本P120習(xí)題14、2第9,10,11題、

  《一次函數(shù)》教案 4

  教學(xué)目標(biāo)

  1、知識(shí)與技能

  理解一次函數(shù)與一元一次不等式的關(guān)系,發(fā)展學(xué)生的認(rèn)知體系、

  2、過程與方法

  經(jīng)歷探索一次函數(shù)與一元一次不等式的關(guān)系的過程,掌握其應(yīng)用方法、

  3、情感、態(tài)度與價(jià)值觀

  培養(yǎng)良好的數(shù)學(xué)抽象思維,體會(huì)本節(jié)課知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用價(jià)值、

  重、難點(diǎn)與關(guān)鍵

  1、重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系、

  2、難點(diǎn):如何應(yīng)用一次函數(shù)性質(zhì)解決一元一次不等式的解集問題、

  3、關(guān)鍵:從一次函數(shù)的圖象出發(fā),直觀地呈現(xiàn)出一元一次不等式的解的范圍、

  教具準(zhǔn)備

  采用“問題解決”的教學(xué)方法、

  教學(xué)過程

  一、回顧交流,知識(shí)遷移

  問題提出:請思考下面兩個(gè)問題:

  (1)解不等式5x+6>3x+10;

 。2)當(dāng)自變量x為何值時(shí),函數(shù)y=2x-4的值大于0?

  學(xué)生活動(dòng)觀察屏幕,通過思考,得到(1)、(2)的答案,回答問題、

  教師活動(dòng)在學(xué)生充分探討的基礎(chǔ)上,引導(dǎo)學(xué)生思考:“一元一次不等式與一次函數(shù)之間有何內(nèi)在聯(lián)系?”

  思路點(diǎn)撥在問題(1)中,不等式5x+6>3x+10可以轉(zhuǎn)化為2x-4>0,解這個(gè)不等式得x>2;問題(2)就是解不等式2x-4>0,得出x>2時(shí)函數(shù)y=2x-4的值大于0,因此這兩個(gè)問題實(shí)際上是同一個(gè)問題,從直線y=2x-4(如圖)可以看出、當(dāng)x>2時(shí),這條直線上的點(diǎn)在x軸的上方,即這時(shí)y=2x-4>0、

  問題探索

  教師敘述:由上面兩個(gè)問題的關(guān)系,能進(jìn)一步得到“解不等式ax+b>0”與“求自變量x在什么范圍內(nèi),一次函數(shù)y=ax+b的值大于0”有什么關(guān)系?

  學(xué)生活動(dòng)小組討論,觀察上述問題的圖象,聯(lián)系不等式、函數(shù)知識(shí),解決問題、

  師生共識(shí)由于任何一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看出:當(dāng)一次函數(shù)值大(小)于0時(shí),求自變量相應(yīng)的取值范圍、

  教學(xué)形式師生互動(dòng)交流,生生互動(dòng)、

  二、范例點(diǎn)擊,領(lǐng)悟新知

  例2用畫函數(shù)圖象的方法解不等式5x+4<2x+10、

  教師活動(dòng)激發(fā)思考、

  學(xué)生活動(dòng)小組合作討論,運(yùn)用兩種思維方法解決例2問題、

  解法1:原不等式化為3x-6<0,畫出直線y=3x-6(左圖),可以看出,當(dāng)x<2時(shí),這條直線上的`點(diǎn)在x軸的下方,即這時(shí)y=3x-6<0,所以不等式的解集為x<2、

  解法2:將原不等式的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4與直線y=2x+10(右圖),可以看出,它們交點(diǎn)的橫坐標(biāo)為2,當(dāng)x<2時(shí),對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)5x+4<2x+10,所以不等式的解集為x<2、

  評(píng)析兩種解法都把解不等式轉(zhuǎn)化為比較直線上點(diǎn)的位置的高低、

  三、隨堂練習(xí),鞏固深化

  課本P216練習(xí)、

  四、課堂,發(fā)展?jié)撃?/p>

  用一次函數(shù)圖象來解一元一次方程或一元一次不等式未必簡單,但是從函數(shù)角度看問題,能發(fā)現(xiàn)一次函數(shù)、一元一次方程與一元一次不等式之間的關(guān)系,能直觀地看到怎樣用圖形來表示方程的解與不等式的解,這種用函數(shù)觀點(diǎn)認(rèn)識(shí)問題的方法,對(duì)于繼續(xù)學(xué)習(xí)數(shù)學(xué)是重要的、

  五、布置作業(yè),專題突破

  課本P129習(xí)題14、3第3,4,7,8,10題、

【《一次函數(shù)》教案】相關(guān)文章:

一次函數(shù)教案11-02

《一次函數(shù)》復(fù)習(xí)課教學(xué)反思10-15

一次函數(shù)復(fù)習(xí)課教學(xué)反思10-18

一次函數(shù)的圖像和性質(zhì)教學(xué)反思09-23

一次函數(shù)的圖象與性質(zhì)說課稿(通用6篇)06-26

《一次函數(shù)圖象與性質(zhì)》同課異構(gòu)聽后反思03-14

《一次函數(shù)》八年級(jí)數(shù)學(xué)教學(xué)反思(精選13篇)08-19

高中教案教案03-05

科學(xué)教案教案科學(xué)教案05-16

比尾巴教案 《比尾巴》的教案10-11