《比的基本性質(zhì)》教案(通用10篇)
作為一名默默奉獻的教育工作者,總不可避免地需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法。來參考自己需要的教案吧!下面是小編收集整理的《比的基本性質(zhì)》教案,歡迎閱讀,希望大家能夠喜歡。
《比的基本性質(zhì)》教案 1
教學目的:
1.使學生掌握整除、約數(shù)和倍數(shù)、質(zhì)數(shù)和合數(shù)等概念,知道它們之間的聯(lián)系和區(qū)別。掌握能被2、5、3整除的數(shù)的特征。會分解質(zhì)因數(shù)。會求最大公約數(shù)和最小公倍數(shù)。
2.使學生在理解的基礎(chǔ)上掌握分數(shù)、小數(shù)的基本性質(zhì)。
教學過程:
一、數(shù)的整除
1.整除的意義:
教師:。想一想.“什么叫做整除?”指名回答,
教師進一步強調(diào):!罢姓f的數(shù)是什么數(shù)?”(整數(shù)。)
“商是什么數(shù)?”(整數(shù)。)“有沒有余數(shù)?”(沒有余數(shù):)
教師:“什么叫除盡?”!皟蓴(shù)相除.余數(shù)是0。)
“整除和除盡有什么聯(lián)系和區(qū)別?”指名回答。教師根據(jù)學生的回答,整理出下表:
教師:“可以看出整除是除盡的一種特殊情況!
2.能被2、5、3整除的數(shù)的特征。
教師:“我們已經(jīng)學過能被2、5、3整除的數(shù)的特征。同學們還記得嗎沖指名說一說。然后提問:
“能被2、5整除的數(shù),在判別方法上有什么共同的地方?”(都根據(jù)個位數(shù)進行判別。)
“能被3整除的數(shù)。在判別方法上與能被2、5整除的數(shù)有什么不同?”(根據(jù)各個數(shù)值上的數(shù)之和進行判別。)
教師:“什么叫做奇數(shù)?什么叫做偶數(shù):”
“根據(jù)什么來判斷—一個數(shù)是奇數(shù)還是偶數(shù)?”
3.約數(shù)和倍數(shù):
教師:“據(jù)整除的概念可以得到約數(shù)和倍數(shù)的概念:什么叫做約數(shù)?什么叫做倍數(shù)?”指名就一說。(如果a能被b整除。a就叫做b的倍數(shù)。b就叫做a的約數(shù)。)為了使學生進一步明確約數(shù)和倍數(shù)是相互依存的,教師可以接著提問:
“能說6是約數(shù).15是倍數(shù)嗎:應該怎么說?”
教師說明:在研究約數(shù)和倍數(shù)時.我們所說的數(shù)一般只指自然數(shù),不包括0。
教師:“一個數(shù)的約數(shù)的'個數(shù)是怎樣的:”(有限的。)
“其中最小的約數(shù)是什么數(shù):最大約數(shù)是什么數(shù)?”(1.這個數(shù)本身。)
“一個數(shù)的倍數(shù)的個數(shù)是怎樣的:”(無限的。)
“其中最小的倍數(shù)是什么數(shù)?”(這個數(shù)本身。)
做練習十九的第:題。讓學生直接做在書上。教帥可以說明做的方法:在含有約數(shù)2的數(shù)”下面寫“2”,在3的倍數(shù)下面寫“3”。在能被5整除的數(shù)下面寫“5”,然后再進行判斷。集體訂正。
4.質(zhì)數(shù)和合數(shù)。
教師指名說一說質(zhì)數(shù)、合數(shù)的概念?捎幸庾R地讓學習有困難的學生說,其他同學進行補充。
教師:“怎樣判斷——個數(shù)是質(zhì)數(shù)還是合數(shù)?”(檢查這個數(shù)約數(shù)的個數(shù).或查質(zhì)數(shù)表。)指名說—說30以內(nèi)有哪些質(zhì)數(shù)。
讓學生進行判斷:—個自然數(shù)如果不是質(zhì)數(shù),那么一定是合數(shù)。學生判斷后,教師說明:1既不是質(zhì)數(shù).也不是合數(shù)。
5.分解質(zhì)因數(shù)。
指名說一說質(zhì)因數(shù)、分解質(zhì)因數(shù)的含義。
做練習十九的第5題。學生獨立解答。教師巡視.集體訂正。
6。公約數(shù)、最大公約數(shù)和公倍數(shù)、最小公倍數(shù)。
(1)復習概念。
教師:“什么叫做公約數(shù)?什么叫做最大公約數(shù)?”(幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的—個叫做這幾個數(shù)的最大公約數(shù)。)“怎樣求幾個數(shù)的最大公約數(shù)?”讓學生舉例說明。
“什么叫做公倍數(shù)?什么叫做最小公倍數(shù)?怎樣求幾個數(shù)的最小公倍數(shù)?”讓學生舉例說明。
教師:“什么樣的數(shù)叫做互質(zhì)數(shù)/(公約數(shù)只有l(wèi)的兩個數(shù)叫做互質(zhì)數(shù),)
“質(zhì)數(shù)和互質(zhì)數(shù)有什么區(qū)別:”(質(zhì)數(shù)足一個數(shù)。只有1和它本身兩個約數(shù);互質(zhì)數(shù)是兩個數(shù).只有公約數(shù)1。)
“兩個不同的質(zhì)數(shù)一定互質(zhì)嗎?”(兩個不同的質(zhì)數(shù)—定互質(zhì)。)
“互質(zhì)的兩個數(shù)一定都是質(zhì)數(shù)嗎?”(不一定,如4和9互質(zhì),4,9都是合數(shù)。)
(2)課堂練習。
做練習十九的第1題、先讓學生獨立判斷,集體訂正時。讓學生說—說判斷的理由。
做練習十九的第4題。學生獨立解答。教師巡視,集體訂正。
教師根據(jù)前面的教學.整理出教科書第86頁的概念聯(lián)系圖。也可以把該圖變化成如下形式。
《比的基本性質(zhì)》教案 2
教學內(nèi)容:
人教版數(shù)學五年級下冊第57頁例1、例2。
教學目標:
。1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
。2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
。3)培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。
。4)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生勇于解決問題的學習品質(zhì)。
教學重點:
探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決問題。
教學難點:
自主探究、歸納概括分數(shù)的基本性質(zhì)。
教學過程:
一、情境設(shè)置,引入新課:
唐僧師徒四人去西天取經(jīng),有一天路過女兒國,國王給了他們師徒四人一塊餅。唐僧說:“我們把這塊餅平均分成四塊,每人一塊吧!必i八戒聽了,急忙說:“一塊太少了,師傅我吃得多,就多分給我一塊吧”。唐僧看了看貪吃的徒弟,不知道怎么辦好。孫悟空說:“師傅,那就把這塊餅平均分成八塊給他兩塊吧。”唐僧笑了笑說,“你這個猴子,真狡猾!
問1:從上面的故事中,你能用學過的知識,表示出他們每人吃了多少餅嗎?
問2:豬八戒有沒有多吃到餅了?
二、探究新知,解決問題
1、師:到底誰的猜想是正確的呢?
。1)讓我們一起來看一個小視頻(播放微課),并回答問題:誰吃得多?也就是誰大?為什么?
(2)學生匯報
。3)得出結(jié)論:1/4=2/8
2、初步概括分數(shù)基本性質(zhì)
(1)師:這兩個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?
提示:從左到右觀察,這兩個分數(shù)的分子、分母怎樣變化才能得到下一個分數(shù),且分數(shù)的大小不變呢?
師板書:分數(shù)的分子分母同時乘相同的數(shù),
分數(shù)的大小不變。
。2)師:誰來舉一個例子。師板書,并問:同時乘以了幾?
。3)師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的.,如果把這個式子從右往左觀察,你們又會發(fā)現(xiàn)什么呢?
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。
師板書:或者除以
3、理解運用分數(shù)基本性質(zhì)
(1)師:根據(jù)分數(shù)的這一變化規(guī)律,你認為這個式子對嗎?為什么?(課件出示下列式子)
學生回答,并說明理由。
。2)師:分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。這里“相同的數(shù)”是不是任何的數(shù)都可以呢?我們一起來看這樣一個分數(shù)。
。ㄕn件出示式子:)這個式子成立嗎?
生:因為在分數(shù)當中分母乘就等于0,分母不能為0。
師:我再說一個式子,我不乘以0了,我除以0,這個式子成立嗎?
生:不成立,因為除數(shù)不能為0
(3)小結(jié):對,因為分數(shù)的分子、分母都乘0,則分數(shù)成為,在分數(shù)里分母不能為0,所以分數(shù)的分子、分母不能同時乘0,又因為在除法里0不能作除數(shù),所以分數(shù)的分子、分母也不能同時除以0。所以這兩個式子都是不成立的?我們剛才總結(jié)的分數(shù)的分子分母同時乘或者除以相同的數(shù),要0除外。(師板書0除外)
師:到現(xiàn)在為止這個規(guī)律我們就總結(jié)完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數(shù)。
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題:分數(shù)的基本性質(zhì))
師:如果豬八戒學會了分數(shù)的基本性質(zhì),那傻乎乎的被大師兄捉弄了,那我們同學們千萬不要犯它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。我們一起來看例2.
三、知識運用
1、例2:把2/3和10/24化成分母是12而大小不變的分數(shù)。
。1)問:分子分母應怎樣變化?變化的依據(jù)是什么?
(2)讓生獨立完成,完成后匯報你是怎樣想的?
2.完成課件練習
3、拓展延伸:
你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?
有位老爺爺把一塊地分給三個兒子.老大分到了這塊地的1/3,老二分到了這塊地的2/6.老三分到了這塊的3/9.老大、老二覺得自己很吃虧,于是三人就大吵起來.剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵.
四、課堂小結(jié)
1、看到同學們也笑起來了,老師就知道今天大家的收獲不少,誰來說說這節(jié)課你都收獲了哪些東西?
五、板書設(shè)計
分數(shù)的基本性質(zhì)
1/4=2/8
分數(shù)的分子分母同時乘相同的數(shù)(0除外),
除以
分數(shù)的大小不變。
《比的基本性質(zhì)》教案 3
教學過程:
一、回顧舊知,復習鋪墊
1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。
教師把學生舉的例子板書出來,并注明比的各部分的名稱。
2、我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?教師板書出下面幾組比,讓學生求出它們的比值。
12:16:4.5:2.710:6
學生求出各比的比值后,再提問:哪兩個比的比值相等?
。4.5:2.7的比值和10:6的比值相等。)
教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?這就是這節(jié)課我們要學習的內(nèi)容。(板書課題:比例的意義)
二、引導探究,學習新知
1、教學比例的意義。
。1)出示P32例1。
每面國旗的長和寬的比分別是多少?指名分別算出一面國旗長和寬的比。
5:2.4:1.660:4015:10
每面國旗長和寬的比值有什么關(guān)系?(都相等)
5:=2.4:1.660:40=15:102.4:1.6=60:40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成:==
(2)我們也學過不同的兩個量也可以組成一個比,如:
一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時)
2
5
路程(千米)
80
200
指名學生讀題。
教師:這道題涉及到時間和路程兩個量的關(guān)系,我們用表格把它們表示出來。表格的第一欄表示時間,單位時,第二欄表示路程,單位千米。這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問邊填寫表格。)
你能根據(jù)這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?教師根據(jù)學生的回答,板書:
第一次所行駛的路程和時間的比是80:2
第二次所行駛的路程和時間的比是200:5
讓學生算出這兩個比的比值。指名學生回答,教師板書:80:2=40,200:5=40。讓學生觀察這兩個比的比值。再提問:你們發(fā)現(xiàn)了什么?(這兩個比的比值都是40,這兩個比相等。)
教師說明:因為這兩個比相等,所以可以把它們用等號連起來組成比例。(板書:80:2=200:5)像這樣表示兩個比相等的式子叫做比例。
指著比例式4.5:2.7=10:6提問:誰能說說什么叫做比例?引導學生觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓學生齊讀一遍。從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必須具備什么條件?因此判斷兩個比能不能組成比例,關(guān)鍵是看什么?如果不能一眼看出兩個比是不是相等的,怎么辦?
根據(jù)學生的回答,教師小結(jié):通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關(guān)鍵是看這兩個比是不是相等。如果不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。例如判斷10:12和35:42這兩個比能不能組成比例,先要算出10:12=,35:42=,所以10:12=35:42。(以上舉例邊說邊板書。)
。3)比較比和比例兩個概念。
教師:上學期我們學習了比,現(xiàn)在又知道了比例的意義,那么比和比例有什么區(qū)別呢?
引導學生從意義上、項數(shù)上進行對比,最后教師歸納:比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
。4)鞏固練習。
、儆檬謩菖袛嘞旅婵ㄆ系膬蓚比能不能組成比例。(能,就用張開拇指和食指表示;不能就用兩手的食指交叉表示。)
6:3和12:635:7和45:920:5和16:80.8:0.4和0.3:0.6
學生判斷后,指名說出判斷的根據(jù)。
、谧鯬33做一做。
讓學生看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自己做得對不對。
③給出2、3、4、6四個數(shù),讓學生組成不同的比例(不要求舉全)。
、躊36練習六的第1~2題。
對于能組成比例的四個數(shù),把能組成的比例寫出來。組成的比例只要能成立就可以。
第4小題,給出的四個數(shù)都是分數(shù),在寫比例式時,也要讓學生寫成分數(shù)形式。
2、教學比例的基本性質(zhì)
。1)教學比例各部分的名稱。
教師:同學們能正確地判斷兩個比能不能組成比例了,那么比例各部分的名稱是什么?請同學們翻開教科書P34,看看什么叫比例的項、外項、內(nèi)項。
指名讓學生指出板書中的比例的外項、內(nèi)項。
(2)教學比例的基本性質(zhì)。
教師:我們知道了比例各部分的名稱,那么比例有什么性質(zhì)呢?現(xiàn)在我們就來研究。(在比例的意義后面板書:比例的基本性質(zhì))請同學們分別計算出這個比例中兩個內(nèi)項的積和兩個外項的積。教師板書:
兩個外項的積是805=400
兩個內(nèi)項的積是2200=400
你發(fā)現(xiàn)了什么?(兩個外項的積等于兩個內(nèi)項的積。)板書:805=2200是不是所有的比例都是這樣的呢?讓學生分組計算前面判斷過的'比例式。通過計算,大家發(fā)現(xiàn)所有的比例式都有這個共同的規(guī)律,誰能用一句話把這個規(guī)律說出來?
最后教師歸納并板書出:在比例里,兩個外項的積等于兩個內(nèi)項的積。并說明這叫做比例的基本性質(zhì)。
如果把比例寫成分數(shù)形式,比例的基本性質(zhì)又是怎樣的呢?(指著80:2=200:5)教師邊問邊改寫成:=
這個比例的外項是哪兩個數(shù)呢?內(nèi)項呢?
因為兩個內(nèi)項的積等于兩個外項的積,所以,當比例寫成分數(shù)的形式,等號兩端的分子和分母分別交叉相乘的積怎么樣?
學生回答后,教師強調(diào):如果把比例寫成分數(shù)形式,比例的基本性質(zhì)就是等號兩端分子和分母分別交叉相乘,積相等。
3.鞏固練習。
前面要判斷兩個比是不是成比例,我們是通過計算它們的比值來判斷的。學過比例的基本性質(zhì)以后,也可以應用比例的基本性質(zhì)來判斷兩個比能不能成比例。
。1)應用比例的基本性質(zhì)判斷3:4和6:8能不能組成比例。
。2)P34做一做。
三、鞏固深化,拓展思維
1、說說比和比例有什么區(qū)別?
2、填空
5:2=80:()2:7=():51.2:2.5=():4
3、先應用比例的意義,再應用比例的基本性質(zhì),判斷下面那組中的兩個比可以組成比例。
。1)6:9和9:12(2)1.4:2和7:10(3)0.5:0.2和:
4、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來。
2、3、4和6
四、全課小結(jié),提高認識
通過這節(jié)課,我們學到了什么知識?什么是比例?比例的基本性質(zhì)是什么?應用比例的基本性質(zhì)可以做什么?
五、課堂練習,輔助消化
P36~37第3~6題。
六、課外補充,拓展延伸
1、判斷。
。1)如果3a=5b,那么5:a=3:b。
(2):和:中,能與:組成比例的是:。
。3)在一個比例中,兩個外項分別是7和8,那么兩個內(nèi)項的和一定是15。
2、用、8、、12四個數(shù)分別作為比例的項,你能組成幾個比例?
3、請你用20以內(nèi)的四個合數(shù)組成一個兩個比的比值都是的比例。
教學目的:
1、使學生理解比例的意義和基本性質(zhì),能正確判斷兩個比是否能組成比例。
2、通過引導探究、概括歸納、討論、合作學習,培養(yǎng)學生抽象概括能力。
3、使學生初步感知事物間是相互聯(lián)系、變化發(fā)展的。
教學重點:比例的意義和基本性質(zhì)
教學難點:應用比的基本性質(zhì)判段兩個數(shù)能否成比例,并正確的組成比例。
《比的基本性質(zhì)》教案 4
一、教學目標:
。ㄒ唬┲R與技能
1.掌握不等式的三條基本性質(zhì)。
2.運用不等式的基本性質(zhì)對不等式進行變形。
(二)過程與方法
1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會“類比”的數(shù)學思想。
2.通過觀察、猜想、驗證、歸納等數(shù)學活動,經(jīng)歷從特殊到一般、由具體到抽象的認知過程,感受數(shù)學思考過程的條理性,發(fā)展思維能力和語言表達能力。
。ㄈ┣楦袘B(tài)度與價值觀
通過探究不等式基本性質(zhì)的活動,培養(yǎng)學生合作交流的意識和大膽猜想,樂于探究的良好思維品質(zhì)。
二、教學重難點
教學重點:探索不等式的三條基本性質(zhì)并能正確運用它們將不等式變形。
教學難點:不等式基本性質(zhì)3的探索與運用。
三、教學方法:自主探究——合作交流
四、教學過程:
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
(1)若x-6=10,則x=16()
(2)若3x=15,則x=5()
(3)若x-6>10則x>16()
(4)若3x>15則x>5()
【設(shè)計意圖】(1)、(2)小題喚起對舊知識等式的基本性質(zhì)的回憶,(3)、(4)小題引導學生大膽說出自己的想法。
溫故知新
問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?
等式性質(zhì)1:等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。
估計學生會猜:不等式兩邊都加上或減去同一個數(shù)(或同一個整式),所得結(jié)果仍是不等式。教師引導:“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應該重點研究它在方向上的變化。
問題2.你能通過實驗、猜想,得出進一步的結(jié)論嗎?
同學通過實例驗證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。
問題3.你能由等式性質(zhì)2進一步猜想不等式還具有什么性質(zhì)嗎?
等式性質(zhì)2:等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),等式依然成立。
估計學生會猜:不等式兩邊都乘或除以同一個數(shù)(除數(shù)不能是0),不等號的方向不變。
你能和小伙伴一起來驗證你們的猜想嗎?
學生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個數(shù)時,不等號的'方向會出現(xiàn)兩種情況。教師進一步引導學生通過分析、比較探索規(guī)律,從而形成共識,歸納概括出不等式性質(zhì)2和3。
問題4.在不等式兩邊都乘0會出現(xiàn)什么情況?
問題5.如果a、b、c表示任意數(shù),且a<b,你能用a、b、c把不等式的基本性質(zhì)表示出來碼?
【想一想】不等式的基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?
學生思考,獨立總結(jié)異同點。
【設(shè)計意圖】引導學生把二者進行比較,有助于加深對不等式基本性質(zhì)的理解,促成知識的“正遷移”。
綜合訓練:你能運用不等式的基本性質(zhì)解決問題嗎?
1、課本62頁例3
教師引導學生觀察每個問題是由a>b經(jīng)過怎樣的變形得到的,應該應用不等式的哪條基本性質(zhì)。由學生思考后口答。
2、你認為在運用不等式的基本性質(zhì)時哪一條性質(zhì)最容易出錯,應該怎樣記?
3.火眼金睛
、賏>1,則2a___a
、赼>3a,則a___0
【設(shè)計意圖】通過變式訓練,加深學生對新知的理解,培養(yǎng)學生分析、探究問題的能力。
課堂小結(jié):
這節(jié)課你有哪些收獲?你認為自己的表現(xiàn)如何?教師引導學生回顧、思考、交流。
【設(shè)計意圖】回顧、總結(jié)、提高。學生自覺形成本節(jié)的課的知識網(wǎng)絡(luò)。
思考題
我們班的盛芳同學準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫盛芳同學考慮一下選擇哪家旅行社更合算嗎?
【設(shè)計意圖】利用所學的數(shù)學知識,解決生活中的問題,加強數(shù)學與生活的聯(lián)系,體驗數(shù)學是描述現(xiàn)實世界的重要手段。
《比的基本性質(zhì)》教案 5
教學目標
進一步理解掌握分數(shù)基本性質(zhì)在通分中的運用,能熟練而靈活地運用通分的方法進行分數(shù)的大小比較。
教學重難點
旋擇適當?shù)姆椒ㄟM行分數(shù)的大小比較。
教學準備分數(shù)卡片
教學過程
一、基本練習
學生自由練習
互相說一個分數(shù),再通分。
學生匯報糾錯
二、集中練習
教師出示:比較下面各組分數(shù)的大小
1、和和
2、和和
請同學評講
課本練習68頁第九題把下面分數(shù)填入合適的圈內(nèi)。
比大的分數(shù)有:
比小的分數(shù)有:
師生討論:怎樣快速的分類?
自由說一個比的分數(shù)。并說出理由。
三、解決實際問題的練習
小明:我10步走了6米,
小紅:我7步走了4米。
問:誰的平均步長長一些?
小組討論,明確解題步驟。
小明:6÷10==
小紅:4÷7=
因為==>
所以>
答:小明的`平均步長長一些。
四、拓展練習:
下面3名小棋手某一天訓練的成績統(tǒng)計
總盤數(shù)贏的盤數(shù)贏的盤數(shù)占總數(shù)的幾分之幾
張129
李107
趙138
誰的成績最好?
小組合作集體解決題型。
三個分數(shù)的大小比較,怎樣比較較好?
五、課堂作業(yè)
68頁第11題
《比的基本性質(zhì)》教案 6
設(shè)計說明
1.注重情境創(chuàng)設(shè),激發(fā)學生的學習興趣。
偉大的科學家愛因斯坦說過:“興趣是最好的老師!币簿褪钦f一個人一旦對某個事物產(chǎn)生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產(chǎn)生愉快的情緒,因此教學時要重視興趣在智力開發(fā)中的作用。本課時的教學通過分餅這一故事情境來創(chuàng)設(shè)一種和諧、愉悅的氣氛,激發(fā)學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的,,。接著教師提問設(shè)疑,導入新課。
2.突出學生的主體地位,在實踐操作中掌握新知。
學生是學習的主體,教師要時刻關(guān)注學生的主體地位。在探究分數(shù)的基本性質(zhì)的過程中,給予學生充分的學習空間,讓學生自主探究,經(jīng)歷折一折、畫一畫、剪一剪、比一比的過程,得出分數(shù)的基本性質(zhì),體驗成功的快樂。
課前準備
教師準備
PPT課件
學生準備
若干張同樣大小的圓形紙片,彩筆
教學過程
⊙故事引入
1.教師講故事。
師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們?nèi)值艹裕瑡寢屜劝训谝粡堬炂骄殖蓛煞,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份!眿寢岦c點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份。”媽媽又點點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。
大毛、二毛、三毛都滿意地笑了,媽媽也笑了。
設(shè)計意圖:借助故事給學生創(chuàng)設(shè)一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發(fā)學生的學習興趣。
2.探究驗證。
(1)提出猜想。
師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?
生:同樣多。
師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數(shù)學家,一起來驗證這個猜想吧!
(2)驗證猜想。
請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。
、僬垡徽郏喊衙繌垐A形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。
、谕恳煌浚涸谡酆玫膱A形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數(shù)表示出來。
、奂粢患簦喊褕A形紙片中的涂色部分剪下來。
、鼙纫槐龋喊鸭粝碌耐可糠种丿B,比一比。
師:通過比較,結(jié)果是怎樣的?
生:同樣大。
設(shè)計意圖:通過自主猜想、自主驗證、自主發(fā)現(xiàn),讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉(zhuǎn)化為動態(tài)的`求知過程,經(jīng)歷分數(shù)的基本性質(zhì)的形成過程。
3.揭示課題。
師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內(nèi)容:分數(shù)的基本性質(zhì)。(師板書,生齊讀課題)
⊙探究新知
1.觀察比較,探究規(guī)律。
(1)請同學們觀察,比較三個分數(shù)的大小。
師:三兄弟分得的餅同樣多,那么這三個分數(shù)的大小是怎樣的呢?(相等)
師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。
(2)請同學們仔細觀察,這三個分數(shù)什么變了,什么沒變?(分子、分母變了,大小沒變)
師:這三個分數(shù)的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?
(課件出示:比較它們的分子和分母)
、購淖笸铱矗前凑帐裁匆(guī)律變化的?
、趶挠彝罂矗质前凑帐裁匆(guī)律變化的?小組內(nèi)討論,交流一下你們的發(fā)現(xiàn)。
師:我們從左往右看,誰愿意說一說自己的發(fā)現(xiàn)?(分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變)
師:我們從右往左看,誰愿意說一說自己的發(fā)現(xiàn)?[分數(shù)的分子和分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變]
師:你們能把這兩個發(fā)現(xiàn)合并成一句話嗎?[分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變]
師:請同學們思考一下,這個數(shù)為什么不能是0?同桌之間討論。(因為在分數(shù)中,分母不能為0,并且在除法里,0不能作除數(shù),所以這個數(shù)不能是0)
(3)教師總結(jié)分數(shù)的基本性質(zhì)。(板書)
《比的基本性質(zhì)》教案 7
教學目標:
1.理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
2.理解和掌握分數(shù)的基本性質(zhì)。
3.較好的實現(xiàn)知識教育與思想教育的有效結(jié)合。
教學重點:
理解和掌握分數(shù)的基本性質(zhì)。
教學難點:
能熟練、靈活地運用分數(shù)的基本性質(zhì)。
教學過程:
一、創(chuàng)設(shè)情景
師:同學們,為了讓你們了解到更多的科技知識,在科技周活動中,學校做了三塊科普展板(投影出示教材中的三塊展板)。同學們認真觀察,你們能提出什么問題?
師:猜想對解決問題很重要,它們到底相不相等?下面以小組為單位,想辦法來驗證一下。
二、新授
師:同學們想了很多好的方法,哪個小組愿意匯報一下?
生1:我們組是用畫圖的方法來驗證的。我們先畫了三個大小一樣的正方形表示三塊展板,把它們分別平均分成2份、4份和8份,再分別去其中的1份、2份和4份涂上顏色(展示學生畫的圖)。通過比較我們發(fā)現(xiàn),涂色部分的大小是相等的,所以
生2:我們組是用折紙的.方法來驗證的。我們先取了三根同樣長的紙條,通過對折把它們分別平均分成2份、4份和8份,分別涂色表示(展示學生的折紙情況)。通過折紙我們組也發(fā)現(xiàn)(學生在小組中討論、驗證)
師:我們發(fā)現(xiàn)的這個規(guī)律,就是分數(shù)的基本性質(zhì)。
同學們現(xiàn)在小組內(nèi)總結(jié)一下,什么是分數(shù)的基本性質(zhì)?
。▽W生認真討論)
師:同學們匯報一下你們的討論結(jié)果。
三、自主練習鞏固提高
課本第80頁1、2、3、題。
其中,第1題引導學生通過涂色和比較,加深對分數(shù)基本性質(zhì)的直觀感受。
第2題二生爬黑板板演,第3、4題學生自做。師巡視指導。
課堂小結(jié):
一生小結(jié),他生補充,教師評判。
《比的基本性質(zhì)》教案 8
教學目標:
1、理解比例的意義,認識比例各部分名稱,初步了解比和比例的區(qū)別;理解比例的基本性質(zhì)。
2、能根據(jù)比例的意義和基本性質(zhì),正確判斷兩個比能否組成比例。
3、在自主探究、觀察比較中,培養(yǎng)學生分析、概括能力和勇于探索的精神。
4、通過自主學習,讓學生經(jīng)經(jīng)歷探究的過程,體驗成功的快樂。
教學重、難點:
重點:理解比例的意義和基本性質(zhì),能正確判斷兩個比能否組成比例。
難點:自主探究比例的基本性質(zhì)。
教學準備:CAI課件
教學過程:
一、復習、導入
1、談話:同學們,我們已經(jīng)學過了比的有關(guān)知識,說說你對比已經(jīng)有了哪些了解?(生答:比的意義、各部分名稱、基本性質(zhì)等。)
還記得怎樣求比值嗎?
2、課件顯示:算出下面每組中兩個比的比值
、3:518:30⑵0.4:0.21.8:0.9
、5/8:1/47.5:3⑷2:89:27
[評析:從學生已有的知識經(jīng)驗入手,方便快捷,為新課做好準備。]
二、認識比例的意義
(一)認識意義
1、指名口答上題每組中兩個比的比值,課件依次顯示答案。
師問:口算完了,你們有什么發(fā)現(xiàn)嗎?(3組比值相等,1組不等)
2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30。
。ㄕn件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)
最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數(shù)據(jù)隱去)
數(shù)學中規(guī)定,像這樣的一些式子就叫做比例。(板書:比例)
[評析:通過口算求比值,發(fā)現(xiàn)有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學,就需要像這樣做好已有經(jīng)驗與新知識的銜接。]
3、今天這節(jié)課我們就一起來研究比例,你想研究哪些內(nèi)容呢?
。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)
5、那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?
。ǜ鶕(jù)學生的回答,教師抓住關(guān)鍵點板書:兩個比比值相等)
同學們說的比例的意義都正確,不過數(shù)學中還可以說得更簡潔些。
課件顯示:表示兩個比相等的式子叫做比例。
學生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
[評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關(guān)鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結(jié)得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生讀一讀,從正反兩方面進一步認識比例,加深了學生對比例的內(nèi)涵的理解。]
。ǘ┚毩
1、出示例1根據(jù)下表,先分別寫出兩次買練習本的錢數(shù)和本數(shù)的比,再判斷這兩個比能否組成比例。
第一次
第二次
買練習本的錢數(shù)(元)
1.2
2
買的本數(shù)
3
5
(1)學生獨立完成。
。2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。
2、完成練習紙第一題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
、欧謩e寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
、品謩e寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。練習1其實是對例題的'巧妙補充。]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
(引導學生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))
4、教學比例各部分的名稱
。1)課件出示:3:5
前項后項
。2)課件出示:3:5=18:30
內(nèi)項
外項
。3)如果把比例寫成分數(shù)的形式,你能指出它的內(nèi)、外項嗎?
課件出示:3/5=18/30
[評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結(jié)、過渡:
剛才我們已經(jīng)研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質(zhì),有興趣嗎?
三、探究比例的基本性質(zhì)
1、課件先出示一組數(shù):3、5、10、6
再出示:運用這四個數(shù),你能組成幾個等式?(等號兩邊各兩個數(shù))
2、獨立思考,并在作業(yè)本上寫一寫。
學生組成的等式可能有:10÷5=6÷3或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據(jù)學生回答板書:3×10=5×63:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、引導發(fā)現(xiàn)規(guī)律
(1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)
。2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現(xiàn)比例的性質(zhì)或規(guī)律嗎?
。3)學生先獨立思考,再小組交流,探究規(guī)律。
。ò鍟簝蓚外項的積等于兩個內(nèi)項的積。)
[評析:“運用這四個數(shù),你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源?紤]到直接探究比例的基本性質(zhì)學生會有困難,教師作了適當?shù)囊龑,通過乘法算式和比例式的橫向聯(lián)系,讓學生在變中尋不變,從而探究出性質(zhì)。]
4、驗證:是不是任意一個比例都有這樣的規(guī)律?
⑴課件顯示復習題(4組),學生驗證。
⑵學生任意寫一個比例并驗證。
⑶完整板書:在比例里,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。
[評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]
5、思考3/5=18/30是那些數(shù)的乘積相等。課件顯示:交叉相乘。
6、小結(jié):剛才我們是怎樣發(fā)現(xiàn)比例的基本性質(zhì)的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)
四、綜合練習
完成練習紙2、3、4
附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14:21和6:9
1.4:2和5:10
3、判斷下面哪一個比能與1/5:4組成比例。
、5:4②20:1
、1:20④5:1/4
4、在()里填上合適的數(shù)。
1.5:3=():4=
12:()=():5
[評析:習題的安排旨在對比例的意義和基本性質(zhì)進行進一步的鞏固和應用,最后一道開放題答案不唯一,意在進一步讓學生體驗和感悟數(shù)學的“變”與“不變”的美妙與統(tǒng)一。]
《比的基本性質(zhì)》教案 9
教學目標
1、理解比的基本性質(zhì)。
2、利用比的基本性質(zhì)正確化簡比。
教學重難點
利用比的基本性質(zhì)正確化簡比。
課前準備
實物投影儀
教學過程
一、聽算練習:
求比值:2:0.54:120:5200:50
90:609:63:20.3:0.2
兩個同學板演:寫出過程。通過計算你有什么發(fā)現(xiàn)?每個比式之間會有什么聯(lián)系?(提出學習目標)
二、引導探究,解決問題
1、觀察黑板上的算式,你有什么發(fā)現(xiàn):
生的發(fā)現(xiàn):前面四個比的比值相等,后面四個比的比值相等。
板書算式:2:0.5=4:1=20:5=200:50=4
(2×2):(0.5×2)(20×10):(5×10)
90:60=9:6=3:2=0.2:0.3=1.5
(90÷10):(60÷10)(3÷10):(2÷10)
觀察第一組比,他們的比值是相等的,前項和后項有什么變化?
以前兩個比和后兩個比為例,找同學說出自己的發(fā)現(xiàn)。
教師添加板書,滲透格式的書寫。
讓學生多說自己的發(fā)現(xiàn),從①到③,從①到④,從②到④等,
然后小結(jié)規(guī)律:比的前項和后項同時乘同一個數(shù),比值不變。
2、觀察第二組比,發(fā)現(xiàn)規(guī)律:方法同上。
比的前項和后項同時除以同一個數(shù)(0除外),比值不變。
。ㄓ蟹謹(shù)的.基本性質(zhì)做定勢,0除外這個關(guān)鍵點學生不會忘記,在這里只須問一句為什么?就可以將這個要點突破)
3、將上面兩個規(guī)律綜合小結(jié):
比的前項和后項同時乘或除以同一個數(shù)(0除外),比值不變。這叫做比的基本性質(zhì)。
4、出示課題:(比的基本性質(zhì))
5、理解概念,找出關(guān)鍵詞。
6、利用比的基本性質(zhì)做出準確判斷:
、8:10=(8+10):10+10=18:20()
、12:16=(12÷6):(16÷4)=2:4()
、0.8:1=(0.8×10):(1×10)=8:10()
④比的前項乘3,要使比值不變,比的后項應除以3。()
7、學習了比的基本性質(zhì),你聯(lián)想到了我們以前學過的那部分知識?
學生很容易想到這些內(nèi)容,比的基本性質(zhì),商不變性質(zhì)。聯(lián)系舊知,形成系統(tǒng)的知識體系。我們剛剛學過分數(shù)、除法、比的聯(lián)系,他們的性質(zhì)能聯(lián)系在一起也就不足為奇了。
問:比的基本性質(zhì)在數(shù)學上有什么用途?(約分、通分)
商不變的性質(zhì)有什么用途?(1.2÷0.3500÷10)
那么我們剛剛學過的比的基本性質(zhì)有什么用途呢?
學生已經(jīng)預習過,故學生應該知道利用比的基本性質(zhì)可以化簡比。
8、觀察黑板上的兩組等式,哪一個比最簡單?學生回答,教師板書:
像1:43:2這樣的比叫做最簡整數(shù)比。
請學生舉出最簡比的例子,多找?guī)讉學生回答,
學生在舉例的同時加深了對最簡整數(shù)比的認識。
由學生總結(jié)。最簡整數(shù)比的特點:
學生總結(jié),教師板書。
1、比的前項后項必須都是整數(shù)。
2、比的前項后項必須是互質(zhì)數(shù)。
以后我們寫出的比應該都化簡成最簡整數(shù)比。
9、化簡比:
出示例題:“神州”五號搭載了兩面聯(lián)合國旗,一面的長是15厘米,寬是10厘米,另一面長是180厘米,寬是120厘米。寫出這兩面旗長與寬的比,并化成最簡整數(shù)比。
學生口答寫出比:15:10180:120
由于學生已經(jīng)預習,因此化簡的過程教給孩子。嘗試練習,找同學板演:
匯報,學生講解化簡過程,教師規(guī)范化簡格式。
化簡分數(shù)比:1/6:2/97/12:3/8
化簡小數(shù)比:0.5:0.40.75:0.25
這部分內(nèi)容的學習交給孩子自己,發(fā)揮學生的主體作用,學生嘗試練習,學生講解。最后讓學生討論化簡整數(shù)比,分數(shù)比,小數(shù)比的方法。
化簡整數(shù)比時,比的前項和后項同時除以它們的最大公因數(shù)。
化簡分數(shù)比時,比的前項和后項同時乘分母的最小公倍數(shù)。
化簡小數(shù)比時,先把小數(shù)比化成整數(shù)比,然后再化成最簡比。
三、鞏固訓練,拓展延伸
1、等比接龍:
2:3=20:30=4:6=200:300=()=()=()=()
100:50=40:20=()=()=()=()
2、一項工程,甲單獨做12天完成,乙單獨做10天完成,甲乙所用時間比是(),工效比是()。
3、甲是乙的1.2倍,甲與乙的比是()。
4、甲是乙的1又1/4倍,甲與乙的比是()。
四、完善認知
通過本節(jié)課學習?你懂得了什么?還有什么疑問嗎?
教后反思:
《比的基本性質(zhì)》教案 10
教學內(nèi)容:
人教版《義務教育課程標準實驗教科書數(shù)學》五年級(下冊)75—78頁。
設(shè)計思路:
《分數(shù)的基本性質(zhì)》是人教版《義務教育課程標準實驗教科書數(shù)學》五年級(下冊)第四單元《分數(shù)的意義和性質(zhì)》的第三節(jié)內(nèi)容。它是在學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎(chǔ)上進行學習的。這節(jié)課的教學重點是理解和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學中創(chuàng)設(shè)學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)”,并應用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。
教學目標:
1.通過教學理解和掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù),再應用這一規(guī)律解決簡單的實際問題。
2.引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據(jù)的思考、探究問題,培養(yǎng)學生的抽象概括能力。
3.滲透初步的辯證唯物主義思想教育,使學生收到數(shù)學思想方法的熏陶,培養(yǎng)探究的學習態(tài)度。
教學重點:
理解和掌握分數(shù)的基本性質(zhì)。
教學難點:
應用分數(shù)的基本性質(zhì)解決實際問題。
教學方法:
直觀演示法、討論法等。
學法:
合作交流、自主探究。
教學準備:
每位學生準備三張同樣大小的正方形(或長方形)的'紙片;教師:長方形(或正方形)的紙片、PPT課件等。
教學過程:
一.創(chuàng)設(shè)情景,激發(fā)興趣
(課件出示)1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關(guān)系是什么?
()()()3.填空:1÷2=()(1×2)÷(2×2)=()()
二.大膽猜想,揭示課題
學生大膽猜想:在除法里有商不變的性質(zhì),在分數(shù)里會不會有類似的性質(zhì)存在呢?(生答:有。┻@個性質(zhì)是什么呢?
隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。
三.探索研究,驗證猜想
1.動手操作,驗證性質(zhì)。
(1)學生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12
份,并分別給其中的1份、2份、3份涂上色,把涂色部分用分數(shù)表示出來。圖(略)????引導學生觀察、思考:你發(fā)現(xiàn)了什么?
(2)小組合作:①觀察、分析、比較在組內(nèi)交流你的發(fā)現(xiàn)。
、诤献鹘涣,各抒己見。
123③選代表全班匯報、交流,師相機板書:4812
123(3)合作討論:為什么相等?4812
①以小組為單位思考討論:(引導)它們的分子、分母各是按照什么規(guī)律變化的?②觀察它們的分子、分母的變化規(guī)律,在組內(nèi)用自己的話說一說。
2.分組匯報,歸納性質(zhì)。
a.從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
。ǜ鶕(jù)學生回答
b.從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
。ǜ鶕(jù)學生的回答)
c.有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
d.綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
。4)引導學生概括出分數(shù)的基本性質(zhì),回應猜想。
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質(zhì)中要規(guī)定“零除外”?
。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。
3.慧眼掃描(下列的式子是否正確?為什么?)(課件出示)
33×263(1)==(生:的分子與分母沒有同時乘以2,分數(shù)的大小改變。)555555÷515(2)==(生:的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)1212÷6212
的大小改變。)11×331==(生:的分子乘以3,而分母除以3,沒有同時乘或除以,1212÷3412(3)
分數(shù)的大小改變。)22×x2x(4)==(生:x在這里代表任意數(shù),當x=0時,分數(shù)無意義。)55×x5x
四.回歸書本,探源獲知
1.瀏覽課本第75—78頁的內(nèi)容。
2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)
3.分數(shù)的基本性質(zhì)與商不變性質(zhì)的比較。
(1)小組合作:討論分數(shù)的基本性質(zhì)與商不變性質(zhì)的異同。
(2)小組內(nèi)交流。
(3)選代表全班交流、匯報。
(4)小結(jié)歸納:分數(shù)的基本性質(zhì)與商不變性質(zhì)內(nèi)容相同,只是名稱不同罷了!
4.自主學習并完成例2,請二名學生說出思路。
五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)
1.想一想,填一填。
33×()988÷()()55×()()2424÷()3
學生口答后,要求說出是怎樣想的?
2.在下面()內(nèi)填上合適的數(shù)。
要求:后二題采取師生對出數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。
3.思維訓練(選擇你喜愛的一道題完成)
3(1)的分子加上6,要使分數(shù)的大小不變,分母應加上多少?5
。2)1/a=7/b(a、b是自然數(shù),且不為0),當a=1,2,3,4??時,b分別等于幾?
討論:a與b之間的關(guān)系是怎樣的?為什么會存在這樣的關(guān)系?依據(jù)是什么?
。3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數(shù)。
思考:分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質(zhì)的重要性,鼓勵學生學好、用好。
六.全課小結(jié)
本節(jié)課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)
七.布置作業(yè)
P77—78練習十四第1、5、8題。
教學反思
“分數(shù)的基本性質(zhì)”是在學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎(chǔ)上進行學習的。這節(jié)課用“猜想——驗證——反思”的方式學習分數(shù)的基本性質(zhì),是學生在大問題背景下的一種研究性學習。這不僅對學生提出了挑戰(zhàn),而且對教師也提出了挑戰(zhàn)。教學中創(chuàng)設(shè)學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)”,并應用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。
本節(jié)課教學設(shè)計突出的特點是學法的設(shè)計。從“創(chuàng)設(shè)情境、激發(fā)興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結(jié)”每一個環(huán)節(jié)完全是為學生自主探究、合作交流學習而設(shè)計的。通過教學總結(jié)了自己的得與失如下:
1.創(chuàng)設(shè)情境,可以更好地激發(fā)學生的學習興趣,學生有了這樣的學習興趣,我想這節(jié)課已經(jīng)成功了一半。因為興趣是最好的老師!
2.學生在操作中大膽猜想。
新課標積極倡導學生“主動參與、樂于探究、勤于思考”,以培養(yǎng)學生獲取知識、分析和解決問題的能力。因此我由學生的猜想入手,可以最大限度的調(diào)動學生“驗證自己猜想”的積極性和主動性,接下來通過學生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學生自己的猜想,這些環(huán)節(jié)充分發(fā)揮了學生的主動性、積極性,從而凸顯學生在學習中的主體地位。教師在教學過程成為學生學習的引導者、支持者、服務者。同時創(chuàng)設(shè)猜想的情境,學生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經(jīng)歷數(shù)學,獲得感性經(jīng)驗,進而理解所學知識,完成知識創(chuàng)造過程。并且也為學生多彩的思維、創(chuàng)設(shè)良好的平臺,由于學生的經(jīng)歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發(fā)展。
3.學生在自主探索中科學驗證。
【《比的基本性質(zhì)》教案】相關(guān)文章:
《比的基本性質(zhì)》教案03-08
分數(shù)的基本性質(zhì)教案01-20
比例的基本性質(zhì)教案12-17
比的基本性質(zhì)09-29
比例的意義和基本性質(zhì)教案02-16
比例的意義和基本性質(zhì)的教案02-25