亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-06-03 04:59:03 總結(jié) 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)

  漫長(zhǎng)的學(xué)習(xí)生涯中,說(shuō)起知識(shí)點(diǎn),應(yīng)該沒(méi)有人不熟悉吧?知識(shí)點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識(shí)。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編整理的數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。

數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)1

  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

  2、圓的方程

 。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

 。2)一般方程

  當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

  當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線,圓,圓心到l的距離為,則有;;

 。2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

 。3)過(guò)圓上一點(diǎn)的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  設(shè)圓,

  兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

  當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

  當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  4、空間點(diǎn)、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號(hào)語(yǔ)言表示公理1:

  公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

  符號(hào):平面α和β相交,交線是a,記作α∩β=a。

  符號(hào)語(yǔ)言:

  公理2的作用:

 、偎桥卸▋蓚(gè)平面相交的方法。

 、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。

  ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

  公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

  推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 、佼惷嬷本定義:不同在任何一個(gè)平面內(nèi)的兩條直線

  ②異面直線性質(zhì):既不平行,又不相交。

  ③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

 、墚惷嬷本所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角

 。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

 。8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)。

  三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α

 。9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問(wèn)題

 。1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,

  那么這條直線和交線平行。線面平行線線平行

 。2)平面與平面平行的判定及其性質(zhì)

  兩個(gè)平面平行的判定定理

 。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

 。ň面平行→面面平行),

  (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。

 。ň線平行→面面平行),

 。3)垂直于同一條直線的兩個(gè)平面平行,

  兩個(gè)平面平行的性質(zhì)定理

 。1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

 。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問(wèn)題

  (1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

 、诰面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

  (2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

  9、空間角問(wèn)題

  (1)直線與直線所成的角

 、賰善叫兄本所成的.角:規(guī)定為。

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

 、蹆蓷l異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

 。2)直線和平面所成的角

  ①平面的平行線與平面所成的角:規(guī)定為。②平面的垂線與平面所成的角:規(guī)定為。

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

  在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

  在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

 。3)二面角和二面角的平面角

  ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

 、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼恰

  兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

  數(shù)學(xué)的學(xué)習(xí)方法

  1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

  2、及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來(lái)掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。

  3、逐步形成“以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動(dòng)地參與學(xué)習(xí)過(guò)程,養(yǎng)成實(shí)事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神。

  4、記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。

  高中數(shù)學(xué)知識(shí)點(diǎn)有哪些

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對(duì)“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。

  3、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶函數(shù)。

  4、函數(shù)零點(diǎn)定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)。函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”函數(shù)的零點(diǎn)定理是“無(wú)能為力”的,在解決函數(shù)的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題。

  5、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數(shù)的圖像”,學(xué)會(huì)從函數(shù)圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法。對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  6、三角函數(shù)的單調(diào)性判斷致誤

  對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  7、向量夾角范圍不清致誤

  解題時(shí)要全面考慮問(wèn)題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

  9、對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤

  等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m—Sm,S3m—S2m(m∈Nx)是等差數(shù)列。

  10、an與Sn關(guān)系不清致誤

  在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn—Sn—1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

  11、錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤

  錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問(wèn)題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n—1項(xiàng)和為主的求和問(wèn)題。這里最容易出現(xiàn)問(wèn)題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。

  12、不等式性質(zhì)應(yīng)用不當(dāng)致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。

  13、數(shù)列中的最值錯(cuò)誤

  數(shù)列問(wèn)題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問(wèn)題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。

  14、不等式恒成立問(wèn)題致誤

  解決不等式恒成立問(wèn)題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過(guò)最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問(wèn)題的區(qū)別,如對(duì)任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恒成立問(wèn)題,但對(duì)存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問(wèn)題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。

  15、忽視三視圖中的實(shí)、虛線致誤

  三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長(zhǎng)對(duì)正,高平齊,寬相等”的規(guī)則去畫(huà),若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實(shí)線畫(huà)出,不可見(jiàn)的輪廓線用虛線畫(huà)出,這一點(diǎn)很容易疏忽。

  16、面積體積計(jì)算轉(zhuǎn)化不靈活致誤

  面積、體積的計(jì)算既需要學(xué)生有扎實(shí)的基礎(chǔ)知識(shí),又要用到一些重要的思想方法,是高考考查的重要題型。因此要熟練掌握以下幾種常用的思想方法。(1)還臺(tái)為錐的思想:這是處理臺(tái)體時(shí)常用的思想方法。(2)割補(bǔ)法:求不規(guī)則圖形面積或幾何體體積時(shí)常用。(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問(wèn)題,常畫(huà)出軸截面進(jìn)行分析求解。

  17、忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)2

  1.有理數(shù):

 。1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。

  3.相反數(shù):

  (1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

 。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對(duì)值:

  (1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;

 。2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類討論;

  5.有理數(shù)比大。海1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0。唬3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

 。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

 。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

  8.有理數(shù)加法的運(yùn)算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

 。2)任何數(shù)同零相乘都得零;

  (3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。

  11.有理數(shù)乘法的運(yùn)算律:

  (1)乘法的交換律:ab=ba;(2)乘法的`結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),。

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

  (2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運(yùn)算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。

  18.混合運(yùn)算法則:先乘方,后乘除,最后加減。

  本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題。

  體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)3

  一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的`解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數(shù)

  對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。

  三、數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  五、概率和統(tǒng)計(jì)

  概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。

  六、解析幾何

  這部分內(nèi)容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類問(wèn)題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問(wèn)題;第三類是弦長(zhǎng)問(wèn)題;第四類是對(duì)稱問(wèn)題;第五類重點(diǎn)問(wèn)題,這類題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準(zhǔn)確度。

  七、壓軸題

  同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)4

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的.構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)5

  高中數(shù)學(xué)復(fù)習(xí)的五大要點(diǎn)分析

  一、端正態(tài)度,切忌浮躁,忌急于求成

  在第一輪復(fù)習(xí)的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現(xiàn)象。主要表現(xiàn)為平時(shí)復(fù)習(xí)覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因?yàn)椋?/p>

  (1)對(duì)復(fù)習(xí)的知識(shí)點(diǎn)缺乏系統(tǒng)的理解,解題時(shí)缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對(duì)基礎(chǔ)知識(shí)點(diǎn)的挖掘,數(shù)學(xué)老師一定都會(huì)反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對(duì)知識(shí)點(diǎn)的系統(tǒng)化分析,不能構(gòu)成一個(gè)整體的知識(shí)網(wǎng)絡(luò)構(gòu)架,自然在解題時(shí)就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

  (2)復(fù)習(xí)的時(shí)候心不靜。心不靜就會(huì)導(dǎo)致思維不清晰,而思維不清晰就會(huì)促使復(fù)習(xí)沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復(fù)習(xí)之前,先靜下心來(lái)認(rèn)真想一想接下來(lái)需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時(shí)需要很高的注意力,只有這樣才會(huì)有很好的效果。

  (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來(lái)。

  因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認(rèn)真的揣摩每個(gè)知識(shí)點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

  二、注重教材、注重基礎(chǔ),忌盲目做題

  要把書(shū)本中的常規(guī)題型做好,所謂做好就是要用最少的時(shí)間把題目做對(duì)。部分同學(xué)在第一輪復(fù)習(xí)時(shí)對(duì)基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會(huì)做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯(cuò)的地方錯(cuò)了”,最終把原因簡(jiǎn)單的歸結(jié)為粗心,從而忽視了對(duì)基本概念的掌握,對(duì)基本結(jié)論和公式的記憶及基本計(jì)算的訓(xùn)練和常規(guī)方法的積累,造成了實(shí)際成績(jī)與心理感覺(jué)的偏差。

  可見(jiàn),數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對(duì)稱性等性質(zhì),學(xué)會(huì)利用圖像即數(shù)形結(jié)合。

  三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對(duì)性,忌無(wú)計(jì)劃

  每個(gè)同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復(fù)習(xí)課上,老師只能針對(duì)性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復(fù)習(xí)的效果就實(shí)現(xiàn)了。同時(shí),也請(qǐng)同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因?yàn)檫@并不能起到更大作用。

  高三的復(fù)習(xí)一定是有計(jì)劃、有目標(biāo)的,所以千萬(wàn)不要盲目做題。第一輪復(fù)習(xí)非常具有針對(duì)性,對(duì)于所有知識(shí)點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒(méi)有針對(duì)性,更不會(huì)有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對(duì)知識(shí)點(diǎn)運(yùn)用方法的總結(jié)。

  四、在平時(shí)做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

  1.樹(shù)立信心,養(yǎng)成良好的運(yùn)算習(xí)慣。部分同學(xué)平時(shí)學(xué)習(xí)過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對(duì)答案,也不認(rèn)真找出錯(cuò)誤原因并加以改正!皶(huì)而不對(duì)”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見(jiàn)的有審題失誤、計(jì)算錯(cuò)誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無(wú)窮?山Y(jié)合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識(shí)方面的缺陷,再有針對(duì)性加以解決。必要時(shí)作些記錄,也就是錯(cuò)題本,每位同學(xué)必備的,以便以后查詢。

  2.做好解題后的開(kāi)拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對(duì)解題方法的開(kāi)拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對(duì)題目做開(kāi)拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

  (1)把題目條件開(kāi)拓引申。

 、侔烟厥鈼l件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

  (2)把題目結(jié)論開(kāi)拓引申。

  (3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

  3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對(duì)常規(guī)解法的掌握是否達(dá)到高度的熟練程度。

  五、學(xué)會(huì)總結(jié)、歸納,訓(xùn)練到位,忌題量不足

  我在暑期上課的時(shí)候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識(shí)點(diǎn)的運(yùn)用,效果可想而知。因此建議同學(xué)們?cè)谧鲱}前要把老師上課時(shí)復(fù)習(xí)的知識(shí)再回顧一下,梳理知識(shí)體系,回顧各個(gè)知識(shí)點(diǎn),對(duì)所學(xué)的知識(shí)結(jié)構(gòu)要有一個(gè)完整清楚的認(rèn)識(shí),認(rèn)真分析題目考查的知識(shí),思想,以及方法,還要學(xué)會(huì)總結(jié)歸納不留下任何知識(shí)的盲點(diǎn),在一輪復(fù)習(xí)中要注意對(duì)各個(gè)知識(shí)點(diǎn)的細(xì)化。這個(gè)過(guò)程不需要很長(zhǎng)的時(shí)間,而且到了后續(xù)階段會(huì)越來(lái)越熟練。因此,養(yǎng)成良好的'做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

  實(shí)踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實(shí)的掌握知識(shí)點(diǎn),還可以更深入的了解知識(shí)點(diǎn),避免出現(xiàn)“會(huì)而不對(duì)、對(duì)而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個(gè)直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會(huì)有較大的提升。有句話說(shuō)的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們?cè)诿空聫?fù)習(xí)的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對(duì)這一章知識(shí)點(diǎn)的熟練運(yùn)用。

  但是,大量訓(xùn)練絕對(duì)不是題海戰(zhàn)術(shù)。因?yàn)獒槍?duì)每章節(jié)做題都有目標(biāo),同時(shí)做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識(shí)點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話說(shuō),如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會(huì)做,那我認(rèn)為就可以了。

  高中數(shù)學(xué)知識(shí)點(diǎn)歸納

  1.必修課程由5個(gè)模塊組成:

  必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對(duì)數(shù)函數(shù))

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統(tǒng)計(jì)、概率。

  必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

  必修5:解三角形、數(shù)列、不等式。

  以上所有的知識(shí)點(diǎn)是所有高中生必須掌握的,而且要懂得運(yùn)用。

  選修課程分為4個(gè)系列:

  系列1:2個(gè)模塊

  選修1-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何。

  選修1-2:統(tǒng)計(jì)案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖

  系列2:3個(gè)模塊

  選修2-1:常用邏輯用語(yǔ)、圓錐曲線與方程、空間向量與立體幾何

  選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)

  選修2-3:計(jì)數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計(jì)案例

  選修4-1:幾何證明選講

  選修4-4:坐標(biāo)系與參數(shù)方程

  選修4-5:不等式選講

  2.重難點(diǎn)及其考點(diǎn):

  重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

  難點(diǎn):函數(shù),圓錐曲線

  高考相關(guān)考點(diǎn):

  1.集合與邏輯:集合的邏輯與運(yùn)算(一般出現(xiàn)在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

  2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

  3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項(xiàng)、求和

  4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

  5.平面向量:初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

  6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

  7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

  8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

  9.直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

  10.排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

  11.概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

  12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

  13.復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

  高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

  考點(diǎn)一:集合與簡(jiǎn)易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和邏輯推理。

  考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

  函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。

  考點(diǎn)三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新熱點(diǎn)”題型.

  考點(diǎn)四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問(wèn)題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目.

  考點(diǎn)五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

  考點(diǎn)六:解析幾何

  一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。

  考點(diǎn)七:算法復(fù)數(shù)推理與證明

  高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識(shí)別與算法語(yǔ)言的閱讀理解.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流.復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問(wèn).

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)6

  一、角的定義

  “靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

  “動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

  如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補(bǔ)角的概念和性質(zhì):

  概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。

  如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。

  說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。

  性質(zhì):同角(或等角)的余角相等;

  同角(或等角)的補(bǔ)角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:從一個(gè)角的頂點(diǎn)引出的.一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。

  常見(jiàn)考法

  (1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計(jì)算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。

  【典型例題】(2010云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )

  【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選C.

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)7

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。

  (2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的'數(shù)是非負(fù)數(shù)。

  4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。

  最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。

  5、利用絕對(duì)值比較大小

  兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;

  兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。

  6、有理數(shù)加法

  (1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.

  (2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.

  (3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡(jiǎn)的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫(xiě).

  例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

  9、有理數(shù)的乘法

  兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘

  10、乘積的符號(hào)的確定

  幾個(gè)有理數(shù)相乘,因數(shù)都不為 0 時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒(méi)有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)

  倒數(shù)是本身的只有1和-1。

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)8

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (3)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.

  (4)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的'項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無(wú)窮數(shù)列.在寫(xiě)數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫(xiě)出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列.

  (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

  3.數(shù)列的通項(xiàng)公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的,

  這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫(xiě)出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4。

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)9

  動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:

  1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  3、多邊形與圓的'運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結(jié)反思:

  本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的.

  解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

  1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)10

  一.定義

  1.一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a叫做被開(kāi)方數(shù).

  2.一般地,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根,求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方.

  3.一般地,如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根或三次方根.求一個(gè)數(shù)的立方根的運(yùn)算,叫做開(kāi)立方.

  4.任何一個(gè)有理數(shù)都可以寫(xiě)成有限小數(shù)或無(wú)限循環(huán)小數(shù)的形式.任何有限小數(shù)或無(wú)限循環(huán)小數(shù)也都是有理數(shù).

  5.無(wú)限不循環(huán)小數(shù)又叫無(wú)理數(shù).

  6.有理數(shù)和無(wú)理數(shù)統(tǒng)稱實(shí)數(shù).

  7.數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).平面直角坐標(biāo)系中與有序?qū)崝?shù)對(duì)之間也是一一對(duì)應(yīng)的.

  二.重點(diǎn)

  1.平方與開(kāi)平方互為逆運(yùn)算.

  2.正數(shù)的.平方根有兩個(gè),它們互為相反數(shù),其中正的平方根就是這個(gè)數(shù)的算術(shù)平方根.

  3.當(dāng)被開(kāi)方數(shù)的小數(shù)點(diǎn)向右每移動(dòng)兩位,它的算術(shù)平方根的小數(shù)點(diǎn)就向右移動(dòng)一位.

  4.當(dāng)被平方數(shù)小數(shù)點(diǎn)每向右移動(dòng)三位,它的立方根小數(shù)點(diǎn)向右移動(dòng)一位.

  5.數(shù)a的相反數(shù)是-a[a為任意實(shí)數(shù)],一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.

  三.注意

  1.被開(kāi)方數(shù)一定是非負(fù)數(shù).

  2.0,1的算術(shù)平方根是它本身;0的平方根是0,負(fù)數(shù)沒(méi)有平方根;正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.

  3.帶根號(hào)的無(wú)理數(shù)的整數(shù)倍或幾分之幾仍是無(wú)理數(shù);帶根號(hào)的數(shù)若開(kāi)之后是有理數(shù)則是有理數(shù);任何一個(gè)有理數(shù)都能寫(xiě)成分?jǐn)?shù)的形式.

  數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)11

  一、數(shù)與數(shù)字的區(qū)別

  數(shù)字(也就是數(shù)碼),是用來(lái)記數(shù)的符號(hào),通常用國(guó)際通用的阿拉伯?dāng)?shù)字 0~9這十個(gè)數(shù)字。其他還有中國(guó)小寫(xiě)數(shù)字,大寫(xiě)數(shù)字,羅馬數(shù)字等等。

  數(shù)是由數(shù)字和數(shù)位組成。

  1.0的意義:0既可以表示“沒(méi)有”,也可以作為某些數(shù)量的界限。如溫度等。0是一個(gè)完全有確定意義的數(shù)。0是最小的自然數(shù),是一個(gè)偶數(shù)。00是最小的自然數(shù),是一個(gè)偶數(shù)。是任何自然數(shù)(0除外)的倍數(shù)。0不能作除數(shù)。

  2.自然數(shù):用來(lái)表示物體個(gè)數(shù)的0、1、2、3、4、5、6、7、8、9、10……叫做自然數(shù)。簡(jiǎn)單說(shuō)就是大于等于零的整數(shù)。

  3.整數(shù): 自然數(shù)都是整數(shù),整數(shù)不都是自然數(shù)。

  4.小數(shù):小數(shù)是特殊形式的'分?jǐn)?shù),所有分?jǐn)?shù)都可以表示成小數(shù),小數(shù)中的圓點(diǎn)叫做小數(shù)點(diǎn)。但是不能說(shuō)小數(shù)就是分?jǐn)?shù)。

  5.混小數(shù)(帶小數(shù)):小數(shù)的整數(shù)部分不為零的小數(shù)叫混小數(shù),也叫帶小數(shù)。

  5.純小數(shù):小數(shù)的整數(shù)部分為零的小數(shù),叫做純小數(shù)。

  7.有限小數(shù):小數(shù)的小數(shù)部分只有有限個(gè)數(shù)字的小數(shù)(不全為零)叫做有限小數(shù)。

  8.無(wú)限小數(shù):小數(shù)的小數(shù)部分有無(wú)數(shù)個(gè)數(shù)字(不包含全為零)的小數(shù),叫做無(wú)限小數(shù)。循環(huán)小數(shù)都是無(wú)限小數(shù),無(wú)限小數(shù)不一定都是循環(huán)小數(shù)。例如,圓周率π也是無(wú)限小數(shù)。

  9.循環(huán)小數(shù):小數(shù)部分一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷地重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。例如:0.333……,1.2470470470……都是循環(huán)小數(shù)。

  10.純循環(huán)小數(shù):循環(huán)節(jié)從十分位就開(kāi)始的循環(huán)小數(shù),叫做純循環(huán)小數(shù)。

  11.混循環(huán)小數(shù):與純循環(huán)小數(shù)有唯一的區(qū)別,不是從十分位開(kāi)始循環(huán)的循環(huán)小數(shù),叫混循環(huán)小數(shù)。

  12.無(wú)限不循環(huán)小數(shù):一個(gè)小數(shù),從小數(shù)部分起到無(wú)限位數(shù),沒(méi)有一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無(wú)限不循環(huán)小數(shù)。

  二、分?jǐn)?shù)

  表示把 “單位1”平均分成若干份,取其中的一份或幾份的數(shù),叫做分?jǐn)?shù)。

【數(shù)學(xué)概論知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

小學(xué)數(shù)學(xué)計(jì)算知識(shí)點(diǎn)總結(jié)08-28

小學(xué)數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)09-05

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-19

大學(xué)數(shù)學(xué)實(shí)驗(yàn)知識(shí)點(diǎn)總結(jié)08-19

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-15

蘇教版數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)06-04

小學(xué)數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)07-26

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)06-20

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-04

小學(xué)數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)07-10