亚洲一区亚洲二区亚洲三区,国产成人高清在线,久久久精品成人免费看,999久久久免费精品国产牛牛,青草视频在线观看完整版,狠狠夜色午夜久久综合热91,日韩精品视频在线免费观看

高考數(shù)學(xué)?贾R點總結(jié)

時間:2022-04-27 08:50:10 總結(jié) 我要投稿
  • 相關(guān)推薦

高考數(shù)學(xué)?贾R點總結(jié)

  在平凡的學(xué)習(xí)生活中,說起知識點,應(yīng)該沒有人不熟悉吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。為了幫助大家更高效的學(xué)習(xí),以下是小編精心整理的高考數(shù)學(xué)?贾R點總結(jié),希望對大家有所幫助。

高考數(shù)學(xué)?贾R點總結(jié)

  高考數(shù)學(xué)常考知識點總結(jié)1

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項。

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列。

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n。

  (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合。

  2.數(shù)列的`分類

  (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列。

  (2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列。

  3.數(shù)列的通項公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。

  高考數(shù)學(xué)?贾R點總結(jié)2

  第一部分集合

 。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

  (2)注意:討論的時候不要遺忘了的情況。

  第二部分函數(shù)與導(dǎo)數(shù)

  1、映射:注意

  ①第一個集合中的元素必須有象;

 、谝粚σ,或多對一。

  2、函數(shù)值域的求法:

 、俜治龇ǎ

  ②配方法;

  ③判別式法;

 、芾煤瘮(shù)單調(diào)性;

 、輷Q元法;

 、蘩镁挡坏仁;

 、呃脭(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);

 、嗬煤瘮(shù)有界性;

 、釋(dǎo)數(shù)法

  3、復(fù)合函數(shù)的.有關(guān)問題

 。1)復(fù)合函數(shù)定義域求法:

 、偃鬴(x)的定義域為〔a,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域。

 。2)復(fù)合函數(shù)單調(diào)性的判定:

 、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

 、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

 、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

  注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

  4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

  5、函數(shù)的奇偶性

 。1)函數(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件;

 。2)是奇函數(shù);

 。3)是偶函數(shù);

 。4)奇函數(shù)在原點有定義,則;

 。5)在關(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

 。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價變形,再判斷其奇偶性;

  高考數(shù)學(xué)常考知識點總結(jié)3

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個元素的集合

  (2) 無限集 含有無限個元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個元素的集合,含有2n個子集,2n-1個真子集

  三、集合的運算

  運算類型 交 集 并 集 補 集

  定 義 由所有屬于A且屬于B的.元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  高考數(shù)學(xué)常考知識點總結(jié)4

  三角函數(shù)。

  注意歸一公式、誘導(dǎo)公式的正確性。

  數(shù)列題。

  1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

  2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的.式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;

  3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

  立體幾何題。

  1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

  2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問題。

  1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

  2、搞清是什么概率模型,套用哪個公式;

  3、記準均值、方差、標(biāo)準差公式;

  4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

  5、注意計數(shù)時利用列舉、樹圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

  高考數(shù)學(xué)?贾R點總結(jié)5

  1、函數(shù)零點的概念:

  對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:

  函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的.圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點。

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

 。1)(代數(shù)法)求方程的實數(shù)根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

  4、二次函數(shù)的零點:

  二次函數(shù)。

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

  高考數(shù)學(xué)?贾R點總結(jié)6

  一、函數(shù)

  1.函數(shù)的基本概念

  函數(shù)的概念,函數(shù)的單調(diào)性,函數(shù)的奇偶性,這些屬于函數(shù)的基本概念,已經(jīng)在高一數(shù)學(xué)必修一中有了詳細的介紹,在此不再贅述。

  2.指數(shù)函數(shù)

  單調(diào)性是指數(shù)函數(shù)的重要性質(zhì),特別是函數(shù)圖象的無限伸展性,x軸是函數(shù)圖象的漸近線,當(dāng)0+∞,y->0;當(dāng)a>1時,x->-∞,y->0;當(dāng)a>1時,a的值越大,第一象限內(nèi)圖象越靠近y軸,遞增的速度越快;

  3.對數(shù)函數(shù)

  對數(shù)函數(shù)的性質(zhì)是每年高考的必考內(nèi)容之一,其中單調(diào)性和對數(shù)函數(shù)的定義域是熱點問題,其單調(diào)性取決于底數(shù)與“1”的大小關(guān)系.

  二、三角函數(shù)

  1.命題趨勢

  高考可能仍會將三角函數(shù)概念、同角三角函數(shù)的關(guān)系式和誘導(dǎo)公式作為基礎(chǔ)內(nèi)容,融于三角求值、化簡及解三角形的考查中.由該部分知識的基礎(chǔ)性決定這一部分知識可以和其他知識融合考查,高考中需要關(guān)注.

  2.三角函數(shù)式的化簡要遵循“三看”原則

 。1)一看“角”,這是最重要的一環(huán),通過看角之間的差別與聯(lián)系,把角進行合理的拆分,從而正確使用公式.

 。2)二看”函數(shù)名稱”,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有”切化弦”

  (3)三看”結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.多做三角函數(shù)練習(xí)題會對更加熟悉的`掌握三角函數(shù)有幫助,這里給大家推薦李老師教的三角函數(shù)解題法。

  三、導(dǎo)數(shù)

  1.導(dǎo)數(shù)的概念

  1)如果當(dāng)Δx-->0時,Δy/Δx-->常數(shù)A,就說函數(shù)y=f(x)在點x0處可導(dǎo),并把A叫做f(x)在點x0處的導(dǎo)數(shù)(瞬時變化率).記作f’(x0)的幾何意義是曲線y=f(x)在點(x0,f(x0))處的切線的斜率.瞬時速度就是位移函數(shù)s對時間t的導(dǎo)數(shù).

  2)如果函數(shù)f(x)在開區(qū)間(a,b)內(nèi)每一點都可導(dǎo),其導(dǎo)數(shù)值在(a,b)內(nèi)構(gòu)成一個新的函數(shù),叫做f(x)在開區(qū)間(a,b)內(nèi)導(dǎo)數(shù),記作f’(x).

  3)如果函數(shù)f(x)在點x0處可導(dǎo),那么函數(shù)y=f(x)在點x0處連續(xù).

  2.函數(shù)的導(dǎo)數(shù)與導(dǎo)數(shù)值的區(qū)別與聯(lián)系:導(dǎo)數(shù)是原來函數(shù)的導(dǎo)函數(shù),而導(dǎo)數(shù)值是導(dǎo)函數(shù)在某一點的函數(shù)值,導(dǎo)數(shù)值是常數(shù).

  3.求導(dǎo)

  在高中數(shù)學(xué)導(dǎo)數(shù)求導(dǎo)過程中,要仔細分析函數(shù)解析式的結(jié)構(gòu)特征,緊扣求導(dǎo)法則,聯(lián)系基本函數(shù)求導(dǎo)公式,對于不具備求導(dǎo)法則結(jié)構(gòu)形式的要適當(dāng)恒等變形,對于比較復(fù)雜的函數(shù),如果直接套用求導(dǎo)法則,會使求導(dǎo)過程繁瑣冗長,且易出錯,此時,可將解析式進行合理變形,轉(zhuǎn)化為教易求導(dǎo)的結(jié)構(gòu)形

【高考數(shù)學(xué)?贾R點總結(jié)】相關(guān)文章:

數(shù)學(xué)高考必考知識點總結(jié)11-12

浙科版生物必修一?贾R點10-26

高二數(shù)學(xué)學(xué)考知識點總結(jié)04-25

高考化學(xué)知識點總結(jié)02-08

數(shù)學(xué)的知識點總結(jié)04-25

數(shù)學(xué)必修知識點總結(jié)04-25

小學(xué)數(shù)學(xué)的知識點總結(jié)04-25

數(shù)學(xué)知識點總結(jié)04-25

數(shù)學(xué)命題知識點總結(jié)04-25