- 相關推薦
初三數(shù)學函數(shù)知識點總結
在日復一日的學習中,是不是經常追著老師要知識點?知識點就是學習的重點。你知道哪些知識點是真正對我們有幫助的嗎?下面是小編幫大家整理的初三數(shù)學函數(shù)知識點總結,希望能夠幫助到大家。
初三數(shù)學函數(shù)知識點總結1
誘導公式的本質
所謂三角函數(shù)誘導公式,就是將角n(/2)的三角函數(shù)轉化為角的三角函數(shù)。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數(shù)值與的三角函數(shù)值之間的.關系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數(shù)值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初三數(shù)學函數(shù)知識點總結2
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。
使函數(shù)有意義的自變量的取值的'全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
。1)解析法
兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應值。
。2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。
。3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
初三數(shù)學函數(shù)知識點總結3
一次函數(shù)
我們稱數(shù)值變化的量為變量(variable)。
有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。
在一個變化過程中,如果有兩個變量x與y,并且對于x的'每一個確定的值,y都有唯一確定的值與其對應,那么我們說x是自變量(independent variable),y是x的函數(shù)(function)。
如果當x=a時y=b,那么b叫做當自變量的值為a時的函數(shù)值。
形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional function),其中k叫做比例系數(shù)。
形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linear function)。正比例函數(shù)是一種特殊的一次函數(shù)。
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
每個二元一次方程組都對應兩個一次函數(shù),于是也對應兩條直線。從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。
同學們對上面一次函數(shù)知識點的總結內容學習,相信同學們已經能很好的掌握了吧,加油吧。
【初三數(shù)學函數(shù)知識點總結】相關文章:
初三數(shù)學全套知識點總結06-30
高一函數(shù)知識點總結07-12
初三數(shù)學上冊知識點總結10-21
二次函數(shù)的知識點總結05-15
初中數(shù)學函數(shù)專題總結09-20
初三物理知識點總結11-03
初三數(shù)學總結09-04
初三化學知識點總結06-28