- 相關推薦
小學生的數(shù)學知識點總結
在年少學習的日子里,大家對知識點應該都不陌生吧?知識點就是學習的重點。哪些才是我們真正需要的知識點呢?下面是小編精心整理的小學生的數(shù)學知識點總結,僅供參考,希望能夠幫助到大家。
小學生的數(shù)學知識點總結1
1、上、下
。1)在具體場景中理解上、下的含義及其相對性。
(2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。
。3)培養(yǎng)學生初步的空間觀念。
2、前、后
。1)在具體場景中理解前、后、最×的含義,以及前后的相對性。
。2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。
。3)培養(yǎng)學生初步的空間觀念。
加減法
。ㄒ唬┍締卧R網(wǎng)絡:
。ǘ└髡n知識點:
有幾枝鉛筆(加法的認識)
知識點:
1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數(shù)合并在一起求一共是多少,用加法計算;
2、初步嘗試選擇恰當?shù)姆椒ㄟM行5以內(nèi)的.加法口算。
3、第一次出現(xiàn)了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的意思。
有幾輛車(初步認識加法的交換律)
3、左、右(1)在具體場景中理解左、右的含義及其相對性。
。2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。
。3)培養(yǎng)學生初步的空間觀念。
4、位置
(1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。
。2)在具體情境中,會用2個數(shù)據(jù)(2個維度)描述人或物體的具體位置。
(3)在具體情境中,能依據(jù)2個維度的數(shù)據(jù)找到人或物體的具體位置。
小學生的數(shù)學知識點總結2
一、百分數(shù)的意義:
表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù)。百分數(shù)又叫百分比或百分率,百分數(shù)不能帶單位。
注意:百分數(shù)是專門用來表示一種特殊的倍比關系的,表示兩個數(shù)的比。
1、百分數(shù)和分數(shù)的區(qū)別和聯(lián)系:
(1)聯(lián)系:都可以用來表示兩個量的倍比關系。
(2)區(qū)別:意義不同:百分數(shù)只表示倍比關系,不表示具體數(shù)量,所以不能帶單位。分數(shù)不僅表示倍比關系,還能帶單位表示具體數(shù)量。百分數(shù)的分子可以是小數(shù),分數(shù)的分子只可以是整數(shù)。
注意:百分數(shù)在生活中應用廣泛,所涉及問題基本和分數(shù)問題相同,分母是100的分數(shù)并不是百分數(shù),必須把分母寫成“%”才是百分數(shù),所以“分母是100的分數(shù)就是百分數(shù)”這句話是錯誤的!%”的兩個0要小寫,不要與百分數(shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小數(shù)、分數(shù)、百分數(shù)之間的互化
(1)百分數(shù)化小數(shù):小數(shù)點向左移動兩位,去掉“%”。
(2)小數(shù)化百分數(shù):小數(shù)點向右移動兩位,添上“%”。
(3)百分數(shù)化分數(shù):先把百分數(shù)寫成分母是100的分數(shù),然后再化簡成最簡分數(shù)。
(4)分數(shù)化百分數(shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分數(shù)。
(5)小數(shù)化分數(shù):把小數(shù)成分母是10、100、1000等的分數(shù)再化簡。
(6)分數(shù)化小數(shù):分子除以分母。
二、百分數(shù)應用題
1、求常見的百分率,如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數(shù)是另一個數(shù)的百分之幾。
2、求一個數(shù)比另一個數(shù)多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:(甲-乙)÷乙
求乙比甲少百分之幾:(甲-乙)÷甲
3、求一個數(shù)的`百分之幾是多少。一個數(shù)(單位“1”)×百分率
4、已知一個數(shù)的百分之幾是多少,求這個數(shù)。
部分量÷百分率=一個數(shù)(單位“1”)
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣、成數(shù)=幾分之幾、百分之幾、小數(shù)
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八點五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半價
6、利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅后利息=利息-利息的應納稅額=利息-利息×5%
注:國債和教育儲蓄的利息不納稅
7、百分數(shù)應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾
(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%
(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%
小學生的數(shù)學知識點總結3
(一)口算除法
1、整十數(shù)除整十數(shù)或幾百幾十的數(shù)的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表內(nèi)除法計算。利用除法運算的性質:將被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。如:200÷50想20÷5=4,所以200÷50=4。
2、兩位數(shù)除兩位數(shù)或三位數(shù)的估算方法:除法估算一般是把算式中不是整十數(shù)或幾百幾十的數(shù)用“四舍五入”法估算成整十數(shù)或幾百幾十的數(shù),再進行口算。注意結果用“≈”號。
(二)筆算除法
1、除數(shù)是兩位數(shù)的筆算除法計算方法:從被除數(shù)的高位除起,先用除數(shù)試除被除數(shù)的前兩位,如果前兩位數(shù)比除數(shù)小,就看前三位。除到被除數(shù)的哪一位,商就寫在那一位的上面。每次除后余下的數(shù)必須比除數(shù)小。
2、除數(shù)不是整十數(shù)的兩位數(shù)的除法的試商方法:如果除數(shù)是一個接近整十數(shù)的兩位數(shù),就用“四舍五入”法把除數(shù)看做與它接近的整十數(shù)試商,也可以把除數(shù)看做與它接近的'幾十五,再利用一位數(shù)的乘法直接確定商。
3、商一位數(shù):
(1)兩位數(shù)除以整十數(shù),如:62÷30;
(2)三位數(shù)除以整十數(shù),如:364÷70
(3)兩位數(shù)除以兩位數(shù),如:90÷29(把29看做30來試商)
(4)三位數(shù)除以兩位數(shù),如:324÷81(把81看做80來試商)
(5)三位數(shù)除以兩位數(shù),如:104÷26(把26看做25來試商)
(6)同頭無除商八、九,如:404÷42(被除數(shù)的位和除數(shù)的位一樣,即“同頭”,被除數(shù)的前兩位除以除數(shù)不夠除,即“無除”,不是商8就是商9。)
(7)除數(shù)折半商四五,如:252÷48(除數(shù)48的一半24,和被除數(shù)的前兩位25很接近,不是商4就是商5。)
4、商兩位數(shù):(三位數(shù)除以兩位數(shù))
(1)前兩位有余數(shù),如:576÷18
(2)前兩位沒有余數(shù),如:930÷31
5、判斷商的位數(shù)的方法:
被除數(shù)的前兩位除以除數(shù)不夠除,商是一位數(shù);被除數(shù)的前兩位除以除數(shù)夠除,商是兩位數(shù)。
(三)商的變化規(guī)律
1、商變化:
(1)被除數(shù)不變,除數(shù)乘(或除以)幾(0除外),商就除以(或乘)相同的數(shù)。
(2)除數(shù)不變,被除數(shù)乘(或除以)幾(0除外)商也乘(或除以)相同的數(shù)。
2、商不變:被除數(shù)和除數(shù)同時乘(或除以)相同的數(shù)(0除外),商不變。
(四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13
小學生的數(shù)學知識點總結4
一、圓的特征
1、圓是平面內(nèi)封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長的線段。
同圓或等圓內(nèi)直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:
圍成圓的曲線的`長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π=周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr
圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)
S圓=πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則,而長方形的面積則最小。
周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。
4、環(huán)形面積=大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內(nèi)切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數(shù)據(jù)
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小學生的數(shù)學知識點總結5
1.根據(jù)方向和距離可以確定物體在平面圖上的位置。
2.在平面圖上標出物體位置的方法:
先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最后找出物體的具體位置,并標上名稱。
3.描述路線圖時,要先按行走路線確定每一個參照點,然后以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什么方向走了多遠到哪兒。
4.繪制路線圖的`方法:
(1)確定方向標和單位長度。
(2)確定起點的位置。
(3)根據(jù)描述,從起點出發(fā),找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其余每一段都要以前一段的終點為參照點。
(4)以誰為參照點,就以誰為中心畫出“十”字方向標,然后判斷下一地點的方向和距離。
小學生的數(shù)學知識點總結6
(一)分數(shù)乘法意義:
1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。
“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。
2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。
“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)
(二)分數(shù)乘法計算法則:
1、分數(shù)乘整數(shù)的計算方法:用分子乘整數(shù)的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)
(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結果必須是最簡分數(shù))。
2、分數(shù)乘分數(shù)的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。
(2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結果才是最簡單分數(shù))。
(4)分數(shù)的基本性質:分子、分母同時乘或者除以一個相同的'數(shù)(0除外),分數(shù)的大小不變。
(三)積與因數(shù)的關系:
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b>1時,c>a。
一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c
一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當b=1時,c=a。
在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。
(四)分數(shù)混合運算
1、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的,再算括號外面的。
2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分數(shù)乘法應用題——用分數(shù)乘法解決問題
1、求一個數(shù)的幾分之幾是多少?(用乘法)
已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。
2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。
3、求比一個數(shù)多(或少)幾分之幾的數(shù)是多少的解題方法
(1)單位“1”的量+(-)單位“1”的量×這個數(shù)量比單位“1”的量多(或少)的幾分之幾=這個數(shù)量;
(2)單位“1”的量×[1+這個數(shù)量比單位“1”的量多(或少)的幾分之幾]=這個數(shù)量。
小學生的數(shù)學知識點總結7
一、學習目標:
1.知道生活中有比萬大的數(shù);認識計數(shù)單位“萬、十萬、百萬、千萬和億”,類推每相鄰兩個計數(shù)單位之間的關系,知道數(shù)級、數(shù)位;
2使學生認識射線,直線,能識別射線、直線和線段三個概念之間的聯(lián)系和區(qū)別;認識角和角的表示方法,知道角的各部分名稱;
3,在理解的基礎上,掌握整數(shù)乘法的口算方法;培養(yǎng)類推遷移的能力和口算的能力;
4.結合生活情境,通過自主探究活動,初步認識平行線、垂線;獨立思考能力與合作精神得到和諧發(fā)展;
5.在理解的基礎上,掌握用整十數(shù)除商是一位數(shù)的口算方法;培養(yǎng)類推遷移的能力和抽象概括的能力。
二、學習難點:
1.認識計數(shù)單位“萬、十萬、百萬、千萬和億”;掌握每相鄰兩個計數(shù)單位之間的關系;
2.角的意義;射線、直線和線段三者之間的關系;
3.掌握整數(shù)乘法的口算方法;培養(yǎng)學生養(yǎng)成認真思考的良好學習習慣;
4.初步認識平行線與垂線;理解永不相交的含義;
5.掌握用整十數(shù)除商是一位數(shù)的口算方法;培養(yǎng)學生養(yǎng)成認真計算的良好學習習慣。
三、知識點概括總結:
1.億以內(nèi)的數(shù)的認識:
十萬:10個一萬;
一百萬:10個十萬;
一千萬:10個一百萬;
一億:10個一千萬。
2.數(shù)級:數(shù)級是為便于人們記讀阿拉伯數(shù)的一種識讀方法,在位值制(數(shù)位順序)的基礎上,以三位或四位分級的原則,把數(shù)讀,寫出來。
通常在阿拉伯數(shù)的書寫上,以小數(shù)點或者空格作為各個數(shù)級的標識,從右向左把數(shù)分開。
3.數(shù)級分類:
(1)四位分級法:即以四位數(shù)為一個數(shù)級的分級方法。
我國讀數(shù)的習慣,就是按這種方法讀的。如:萬(數(shù)字后面4個0)、億(數(shù)字后面8個0)、兆(數(shù)字后面12個0,這是中法計數(shù))……。這些級分別叫做個級,萬級,億級……。
(2)三位分級法:即以三位數(shù)為一個數(shù)級的分級方法。
這西方的'分級方法,這種分級方法也是國際通行的分級方法。如:千,數(shù)字后面3個0、百萬,數(shù)字后面6個0、十億,數(shù)字后面9個0……。
4.數(shù)位:數(shù)位是指寫數(shù)時,把數(shù)字并列排成橫列,一個數(shù)字占有一個位置,這些位置,都叫做數(shù)位。
從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。
這就說明計數(shù)單位和數(shù)位的概念是不同的。
5.數(shù)的產(chǎn)生:
阿拉伯數(shù)字的由來:古代印度人創(chuàng)造了阿拉伯數(shù)字后,大約到了公元7世紀的時候,這些數(shù)字傳到了阿拉伯地區(qū)。到13世紀時,意大利數(shù)學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數(shù)字做了詳細的介紹。后來,這些數(shù)字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數(shù)字是從阿拉伯地區(qū)傳入的,所以便把這些數(shù)字叫做阿拉伯數(shù)字。以后,這些數(shù)字又從歐洲傳到世界各國。
阿拉伯數(shù)字傳入我國,大約是13到14世紀。由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯數(shù)字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數(shù)學成就的吸收和引進,阿拉伯數(shù)字在我國才開始慢慢使用,阿拉伯數(shù)字在我國推廣使用才有100多年的歷史。阿拉伯數(shù)字現(xiàn)在已成為人們學習、生活和交往中最常用的數(shù)字了。
【小學生的數(shù)學知識點總結】相關文章:
小學數(shù)學計算知識點總結08-28
小學數(shù)學集合知識點總結09-05
中考數(shù)學知識點總結05-19
大學數(shù)學實驗知識點總結08-19
初中數(shù)學知識點總結08-15
蘇教版數(shù)學中考知識點總結06-04
小學數(shù)學圓的知識點總結07-26
高三數(shù)學復習知識點總結06-20
高三數(shù)學知識點總結07-04
小學數(shù)學必背知識點總結07-10