- 相關(guān)推薦
高中數(shù)學(xué)有效實用的解題思路技巧總結(jié)
總結(jié)是在一段時間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,通過它可以正確認(rèn)識以往學(xué)習(xí)和工作中的優(yōu)缺點,因此我們需要回頭歸納,寫一份總結(jié)了?偨Y(jié)你想好怎么寫了嗎?以下是小編為大家整理的高中數(shù)學(xué)有效實用的解題思路技巧總結(jié),歡迎閱讀與收藏。
高中數(shù)學(xué)解題思路
數(shù)形結(jié)合
對于高中數(shù)學(xué)題的解題思路有許多種,但數(shù)與形結(jié)合是最常用的,因此我們在解答數(shù)學(xué)題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題,因為通過結(jié)合圖形能快速的找出一些數(shù)學(xué)題的解題思路。
分類討論
我們常常會遇到這樣的情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。由于高中數(shù)學(xué)的變通性強(qiáng),就會引起分類討論。在分類討論解題時,要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
假設(shè)法
(1)對于所求的未知量,先設(shè)法構(gòu)思一個與它有關(guān)的'變量;
(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計算法則得出結(jié)果或利用圖形的極限位置直接計算結(jié)果。
函數(shù)與方程
函數(shù)思想是指運(yùn)用運(yùn)動變化的觀點,分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系,運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;
方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高中數(shù)學(xué)解題速度快的方法
鐵律1:
函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
鐵律2:
函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
鐵律3
面對含有參數(shù)的初等函數(shù)來說,在研究的時候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點,二次函數(shù)的對稱軸或是……
鐵律4:
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法。
鐵律5
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法。
鐵律6
恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的'應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏。
鐵律7
圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式。
鐵律8
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點、列式、化簡(注意去掉不符合條件的特殊點)。
鐵律9
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可。
鐵律10
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍。
鐵律11
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時候注意使用通項公式及前n項和公式,體會方程的思想。
鐵律12
立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計算注意系數(shù)1/3,而三角形面積的計算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題。
鐵律13
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點是否在曲線上。
鐵律14
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點是否在曲線上。
鐵律15
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成。
鐵律16
注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等。
鐵律17
絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義。
鐵律18
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成。
鐵律19
關(guān)于中心對稱問題,只需使用中點坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個等式的運(yùn)用:一是垂直,一是中點在對稱軸上。
高中數(shù)學(xué)考場答題方法
1.試卷上有參考公式,80%是有用的,它為你的解題指引了方向;
2.注意題目中的小括號括起來的部分,那往往是解題的關(guān)鍵;
3.面對含有參數(shù)的初等函數(shù)來說,在研究的時候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì).如所過的定點,二次函數(shù)的對稱軸或是……
4.函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系.首先考慮定義域,其次使用“三合一定理”.
5.如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
6.導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點是否在曲線上;
7.選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
8.與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成。
【高中數(shù)學(xué)有效解題思路技巧總結(jié)】相關(guān)文章:
月考總結(jié)主題的思路10-28
有效溝通技巧的心得體會(精選9篇)07-26
有效上課培訓(xùn)總結(jié)09-11
小學(xué)語文有效教學(xué)總結(jié)08-12
保衛(wèi)科工作總結(jié)和工作思路 -工作思路08-24
辦公室工作思路 -工作思路06-01